Hyperspectral z-scan: Measurement of spectrally resolved nonlinear optical properties.

Spectrochim Acta A Mol Biomol Spectrosc

Centre for Optical and Laser Engineering, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore. Electronic address:

Published: November 2021

Broadband hyperspectral z-scan using a supercontinuum light source is a convenient technique to obtain spectrally resolved nonlinear optical properties of the materials under investigation. Post-processing and segregation of the data obtained from the supercontinuum based hyperspectral z-scan measurement aids in determining the nonlinear optical properties with high spectral resolution. However, few data models exist to store and represent the large amount of information acquired from the hyperspectral z-scan measurement. In this paper, a 3D data model for representing the data obtained from broadband z-scan measurements and analysis is presented. This method would help in the quick characterization of spectrally resolved nonlinear optical properties of materials from a single z-scan measurement. The proposed model is used for obtaining the spectrally resolved nonlinear optical properties of rhodamine 6G.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2021.120005DOI Listing

Publication Analysis

Top Keywords

nonlinear optical
20
optical properties
20
hyperspectral z-scan
16
z-scan measurement
16
spectrally resolved
16
resolved nonlinear
16
properties materials
8
nonlinear
5
optical
5
properties
5

Similar Publications

Background: Clinical rating scales and neuropsychological tests are commonly used for assessing sign and disease severity, yet lack detail in the early stages Alzheimer's Disease (AD). Existing evaluation methods can be subjective, nonlinear, expensive, or reliant on anecdotal evidence making objective and consistent characterization and phenotyping of AD difficult. Multimodal analysis of patient behavior, rather than scoring of patient-generated output which can be skewed by compensation strategies, presents a unique opportunity to objectively quantify AD related changes.

View Article and Find Full Text PDF

A HTO-Type Nonlinear Optical Fluorophosphate with Ultrawide Bandgap.

Small

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.

Compounds having hexagonal tungsten oxides (HTO) topology are of intense research interests owing to their potential functional properties, such as nonlinear optical (NLO) performances. However, most of the reported HTO-type compounds exhibit narrow optical bandgaps because of the d-d electronic transition of compositional d transition metals and lone pair electrons effect of Se/Te, which hinder their applications in the high-energy field, such as deep-ultraviolet (deep-UV) region. In this work, a new fluorophosphate, (NH)[ScF(PO)](POF) exhibiting HTO-topological structures is reported.

View Article and Find Full Text PDF

Background: Modern reconstruction algorithms for computed tomography (CT) can exhibit nonlinear properties, including non-stationarity of noise and contrast dependence of both noise and spatial resolution. Model observers have been recommended as a tool for the task-based assessment of image quality (Samei E et al., Med Phys.

View Article and Find Full Text PDF

Nanoscale thickness Octave-spanning coherent supercontinuum light generation.

Light Sci Appl

January 2025

Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland.

Coherent broadband light generation has attracted massive attention due to its numerous applications ranging from metrology, sensing, and imaging to communication. In general, spectral broadening is realized via third-order and higher-order nonlinear optical processes (e.g.

View Article and Find Full Text PDF

Improving the performance of echo state networks through state feedback.

Neural Netw

December 2024

Wyant College of Optical Sciences, University of Arizona, Tuscon, AZ, USA. Electronic address:

Reservoir computing, using nonlinear dynamical systems, offers a cost-effective alternative to neural networks for complex tasks involving processing of sequential data, time series modeling, and system identification. Echo state networks (ESNs), a type of reservoir computer, mirror neural networks but simplify training. They apply fixed, random linear transformations to the internal state, followed by nonlinear changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!