An ex vivo physiologic and hyperplastic vessel culture model to study intra-arterial stent therapies.

Biomaterials

Department of Anesthesiology, School of Medicine, Yale University, New Haven, CT, 06519, USA; Department of Biomedical Engineering, School of Medicine, Yale University, New Haven, CT, 06519, USA. Electronic address:

Published: August 2021

Conventional in vitro methods for biological evaluation of intra-arterial devices such as stents fail to accurately predict cytotoxicity and remodeling events. An ex vivo flow-tunable vascular bioreactor system (VesselBRx), comprising intra- and extra-luminal monitoring capabilities, addresses these limitations. VesselBRx mimics the in vivo physiological, hyperplastic, and cytocompatibility events of absorbable magnesium (Mg)-based stents in ex vivo stent-treated porcine and human coronary arteries, with in-situ and real-time monitoring of local stent degradation effects. Unlike conventional, static cell culture, the VesselBRx perfusion system eliminates unphysiologically high intracellular Mg concentrations and localized O consumption resulting from stent degradation. Whereas static stented arteries exhibited only 20.1% cell viability and upregulated apoptosis, necrosis, metallic ion, and hypoxia-related gene signatures, stented arteries in VesselBRx showed almost identical cell viability to in vivo rabbit models (~94.0%). Hyperplastic intimal remodeling developed in unstented arteries subjected to low shear stress, but was inhibited by Mg-based stents in VesselBRx, similarly to in vivo. VesselBRx represents a critical advance from the current static culture standard of testing absorbable vascular implants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9195126PMC
http://dx.doi.org/10.1016/j.biomaterials.2021.120911DOI Listing

Publication Analysis

Top Keywords

mg-based stents
8
stent degradation
8
stented arteries
8
cell viability
8
vivo
6
vesselbrx
6
vivo physiologic
4
physiologic hyperplastic
4
hyperplastic vessel
4
vessel culture
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!