The adsorptive loss of acidic analytes in liquid chromatography was investigated using metal frits. Repetitive injections of acidic small molecules or an oligonucleotide were made on individual 2.1 or 4.6 mm i.d. column frits. Losses were observed for adenosine 5'-(α,β-methylene) diphosphate, 2-pyridinol 1-oxide and the 25-mer phosphorothioate oligonucleotide Trecovirsen (GEM91) on stainless steel and titanium frits. Analyte adsorption was greatest at acidic pH due to the positive charge on the metal oxide surface. Analyte recovery increased when a series of injections was performed; this effect is known as sample conditioning. Nearly complete recovery was achieved when the metal adsorptive sites were saturated with the analyte. A similar effect was achieved by conditioning the frits with phosphoric, citric or etidronic acids, or their buffered solutions. These procedures can be utilized to mitigate analyte loss. However, the effect is temporary, as the conditioning agent is gradually removed by the running mobile phase. Metal frits modified with hybrid organic/inorganic surface technology were shown to mitigate analyte-to-metal surface interactions and improve recovery of acidic analytes. Quantitative recovery of a 15-35 mer oligodeoxythymidine mixture was achieved using column hardware modified with hybrid surface technology, without a need for column conditioning prior to analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2021.462247 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!