Pedestrian safety has been a major concern in Hong Kong, where walking is an important access mean to urban transportation services and pedestrian-vehicle conflicts are prevalent. Red light running violation of pedestrians is a leading cause of pedestrian-vehicle crashes at the signal intersections. It is necessary to examine the possible factors including personal characteristics and road environments that affect the propensities of red light running violation of pedestrians. Therefore, effective traffic control and enforcement measures can be implemented to deter against the red light running behaviors of pedestrians. This study attempts to examine the roles of trade-off between safety and time, as well as situational features and personality traits, in the red light running behaviors of pedestrians using a stated preference survey method. Then, a regret-based panel mixed multinomial logit model is established for the association measure between propensities of red light running violation and possible factors, with which the effects of unobserved heterogeneity and correlation in the choices between different scenarios of the same person are considered. Results indicate that the choice decision of pedestrians are more sensitive to a reduction in time loss, as compared to the equivalent increase in safety risk. In addition, the safety versus time trade-off may vary between pedestrian groups. Furthermore, presence and type of another violator also significantly affect the propensities of red light running violation. Such findings are indicative to effective policy interventions that can deter against the red light running behaviors of vulnerable pedestrian groups. Therefore, overall pedestrian safety level can be improved in the long term.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aap.2021.106214 | DOI Listing |
J Photochem Photobiol B
January 2025
Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland.
Sages and their beneficial secondary metabolites have been used in conventional and traditional medicine in many countries, and are extensively studied for their health effects. However, to achieve high production levels, it is crucial to optimize the cultivation conditions. The aim of our study was to determine the optimal light-emitting diode (LED) treatment strategy for promoting plant growth and polyphenol biosynthesis in S.
View Article and Find Full Text PDFLasers Med Sci
January 2025
The Department of Preventive Dentistry, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
The purpose of this study was to examine how low-energy LED red light influences the early to middle stage of osteogenic differentiation of periodontal ligament stem cells (PDLSCs) via the ERK5 signaling pathway. METHODS: PDLSCs were extracted from periodontal membrane tissue using enzymatic digestion. At three time points of 7, 10, and 14 days after irradiation with 5J/cm LED red light, the expression levels of early to middle-stage osteogenic-related genes ALP, Col-1, BSP, and OPN were detected by real-time fluorescence quantitative PCR(qRT-PCR) in both control and osteogenesis experimental groups.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
Multi-step Förster resonance energy transfer (FRET) plays a vital role in photosynthesis. While the energy transfer efficiency (Φ) of a naturally occurring system can reach 95%, that of most artificial light-harvesting systems (ALHSs) is still limited. Herein, we propose a strategy to construct highly efficient ALHSs using a blue-emitting, supercooled ionic compound of naphthalimide (NPI) as the donor, a green-emitting BODIPY derivate as a relay acceptor, and a commercially available, red-emitting dye [rhodamine B (RhB)] as the final acceptor.
View Article and Find Full Text PDFPhotosynth Res
January 2025
Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.
Red algae are photosynthetic eukaryotes whose light-harvesting complexes (LHCs) associate with photosystem I (PSI). In this study, we examined characteristics of PSI-LHCI, PSI, and LHCI isolated from the red alga Galdieria sulphuraria NIES-3638. The PSI-LHCI supercomplexes were purified using anion-exchange chromatography followed by hydrophobic-interaction chromatography, and finally by trehalose density gradient centrifugation.
View Article and Find Full Text PDFSci Rep
January 2025
Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, People's Republic of China.
A dual-polarity, photovoltaic photodetector for red-green dual-wavelength detection is demonstrated, operating in the self-powered mode. It is based on a core-shell n-InGaN nanowire/p-CuO heterostructure with inner upward energy band bending and near surface downward energy band bending. This produces negative photocurrent for red light illumination and positive photocurrent for green light illumination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!