Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The age at which astronauts experience microgravity is a critical consideration for skeletal health and similarly has clinical relevance for musculoskeletal disuse on Earth. While astronauts are extensively studied for bone and other physiological changes, rodent studies enable direct evaluation of skeletal changes with microgravity. Yet, mouse spaceflight studies have predominately evaluated tissues from young, growing mice. We evaluated bone microarchitecture in tibiae and femurs from Young (9-week-old) and Mature (32-weeks-old) female, C57BL/6N mice flown in microgravity for ~2 and ~3 weeks, respectively. Microgravity-induced changes were both compartment- and site-specific. Changes were greater in trabecular versus cortical bone in Mature mice exposed to microgravity (-40.0% Tb. BV/TV vs -4.4% Ct. BV/TV), and bone loss was greater in the proximal tibia as compared to the distal femur. Trabecular thickness in Young mice increased by +25.0% on Earth and no significant difference following microgravity. In Mature mice exposed to microgravity, trabecular thickness rapidly decreased (-24.5%) while no change was detected in age-matched mice that were maintained on Earth. Mature mice exposed to microgravity experienced greater bone loss than Young mice with net skeletal growth. Moreover, machine learning classification models confirmed that microgravity exposure-driven decrements in trabecular microarchitecture and cortical structure occurred disproportionately in Mature than in Young mice. Our results suggest that age of disuse onset may have clinical implications in osteoporotic or other at-risk populations on Earth and may contribute to understanding bone loss patterns in astronauts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2021.116021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!