Roles of Fe-Histidine bonds in stability of hemoglobin: Recognition of protein flexibility by Q Sepharose.

Biophys J

Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan; School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.

Published: July 2021

Using various mutants, we investigated to date the roles of the Fe-histidine (F8) bonds in cooperative O binding of human hemoglobin (Hb) and differences in roles between α- and β-subunits in the αβ tetramer. An Hb variant with a mutation in the heme cavity exhibited an unexpected feature. When the β mutant rHb (βH92G), in which the proximal histidine (His F8) of the β-subunit is replaced by glycine (Gly), was subjected to ion-exchange chromatography (Q Sepharose column) and eluted with an NaCl concentration gradient in the presence of imidazole, yielded two large peaks, whereas the corresponding α-mutant, rHb (αH87G), gave a single peak similar to Hb A. The β-mutant rHb proteins under each peak had identical isoelectric points according to isoelectric focusing electrophoresis. Proteins under each peak were further characterized by Sephadex G-75 gel filtration, far-UV CD, H NMR, and resonance Raman spectroscopy. We found that rHb (βH92G) exists as a mixture of αβ-dimers and αβ tetramers, and that hemes are released from β-subunits in a fraction of the dimers. An approximate amount of released hemes were estimated to be as large as 30% with Raman relative intensities. It is stressed that Q Sepharose columns can distinguish differences in structural flexibility of proteins having identical isoelectric points by altering the exit rates from the porous beads. Thus, the role of Fe-His (F8) bonds in stabilizing the Hb tetramer first described by Barrick et al. was confirmed in this study. In addition, it was found in this study that a specific Fe-His bond in the β-subunit minimizes globin structural flexibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8390899PMC
http://dx.doi.org/10.1016/j.bpj.2021.05.014DOI Listing

Publication Analysis

Top Keywords

roles fe-histidine
8
fe-histidine bonds
8
rhb βh92g
8
proteins peak
8
identical isoelectric
8
isoelectric points
8
structural flexibility
8
bonds stability
4
stability hemoglobin
4
hemoglobin recognition
4

Similar Publications

Roles of Fe-Histidine bonds in stability of hemoglobin: Recognition of protein flexibility by Q Sepharose.

Biophys J

July 2021

Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan; School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan.

Using various mutants, we investigated to date the roles of the Fe-histidine (F8) bonds in cooperative O binding of human hemoglobin (Hb) and differences in roles between α- and β-subunits in the αβ tetramer. An Hb variant with a mutation in the heme cavity exhibited an unexpected feature. When the β mutant rHb (βH92G), in which the proximal histidine (His F8) of the β-subunit is replaced by glycine (Gly), was subjected to ion-exchange chromatography (Q Sepharose column) and eluted with an NaCl concentration gradient in the presence of imidazole, yielded two large peaks, whereas the corresponding α-mutant, rHb (αH87G), gave a single peak similar to Hb A.

View Article and Find Full Text PDF

An Origin of Cooperative Oxygen Binding of Human Adult Hemoglobin: Different Roles of the α and β Subunits in the α2β2 Tetramer.

PLoS One

May 2016

Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan; Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan,3 School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan,4 Department of Frontier Biosciences, Hosei University, Koganei, Tokyo, Japan,5 Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, Sayo, Sayo-gun, Hyogo, Japan.

Human hemoglobin (Hb), which is an α2β2 tetramer and binds four O2 molecules, changes its O2-affinity from low to high as an increase of bound O2, that is characterized by 'cooperativity'. This property is indispensable for its function of O2 transfer from a lung to tissues and is accounted for in terms of T/R quaternary structure change, assuming the presence of a strain on the Fe-histidine (His) bond in the T state caused by the formation of hydrogen bonds at the subunit interfaces. However, the difference between the α and β subunits has been neglected.

View Article and Find Full Text PDF

In all mammalian peroxidases, the heme is covalently attached to the protein via two ester linkages between conserved aspartate (Asp94) and glutamate residues (Glu242) and modified methyl groups on pyrrole rings A and C. Only myeloperoxidase has an additional sulfonium ion linkage between the sulfur atom of the conserved methionine 243 and the beta-carbon of the vinyl group on pyrrole ring A. Upon reduction from Fe(III) to Fe(II), lactoperoxidase (LPO) but not myeloperoxidase (MPO) is shown to adopt three distinct active site conformations which depend on pH and time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!