Vaccination is the most efficient means of preventing influenza infection and its complications. While previous studies have considered the externalities of vaccination that arise from indirect protection against influenza infection, they have often neglected another key factor-the spread of vaccination behavior among social contacts. We modeled influenza vaccination as a socially contagious process. Our model uses a contact network that we developed based on aggregated and anonymized mobility data from the cellphone devices of ~1.8 million users in Israel. We calibrated the model to high-quality longitudinal data of weekly influenza vaccination uptake and influenza diagnoses over seven years. We demonstrate how a simple coupled-transmission model accurately captures the spatiotemporal patterns of both influenza vaccination uptake and influenza incidence. Taking the identified complex underlying dynamics of these two processes into account, our model determined the optimal timing of influenza vaccination programs. Our simulation shows that in regions where high vaccination coverage is anticipated, vaccination uptake would be more rapid. Thus, our model suggests that vaccination programs should be initiated later in the season, to mitigate the effect of waning immunity from the vaccine. Our simulations further show that optimally timed vaccination programs can substantially reduce disease transmission without increasing vaccination uptake.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8177529 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0252510 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!