Autophagy in dopamine (DA) neurons is concerned to be associated with Parkinson's disease (PD), but the detailed mechanism remains unknown. Herein, we aimed to investigate the function of microRNA (miR)-29c-3p in autophagy in PD models. Intraperitoneal injection of MPTP (20 mg/kg) was given to C57BL/6 mice to establish PD mouse model. SH-SY5Y cells were treated with MPP (1 mmol/L) to establish in vitro PD model. The results indicated that in the substantia nigra pars compacta (SNpc) DA neurons of PD mice, autophagy was activated accompanied by down-regulated miR-29c-3p and up-regulated ten-eleven translocation 2 (TET2) expression. Up-regulation of miR-29c-3p inhibited TET2 expression and SNpc (including DA neurons) autophagy in PD mice. In vitro PD model confirmed that MPP treatment markedly down-regulated miR-29c-3p expression and up-regulated TET2 expression in SH-SY5Y cells in a dose/time-dependent manner. Moreover, miR-29c-3p up-regulation also inhibited autophagy and TET2 expression in vitro. Additionally, TET2 was proved to be targeted and down-regulated by miR-29c-3p. TET2 knockdown inhibited MPP -induced autophagy, whereas TET2 over-expression reversed the effects of miR-29c-3p over-expression on SH-SY5Y cell autophagy. Overall, miR-29c-3p over-expression inhibits autophagy in PD models, which may be mediated by TET2. Our finding may provide new insights for regulating autophagy to improve PD progression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gtc.12877 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!