RNA motifs guide the interaction with specific proteins leading to the assembly of ribonucleoprotein complexes that perform key functions in cellular processes. Internal ribosome entry site (IRES) elements are organized in structural domains that determine internal initiation of translation. In this chapter we describe a pull-down assay using streptavidin-aptamer tagged RNAs that combines RNA structure-dependent protein isolation with proteomic analysis to identify novel interactors recognizing RNA structural domains. This approach takes advantage of tRNA-scaffold guided expression, allowing the identification of factors belonging to networks involved in RNA and protein metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-1499-0_9 | DOI Listing |
J Inflamm Res
January 2025
Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
Background: Chronic kidney disease (CKD) is a progressive condition that arises from diverse etiological factors, resulting in structural alterations and functional impairment of the kidneys. We aimed to establish the Anoikis-related gene signature in CKD by bioinformatics analysis.
Methods: We retrieved 3 datasets from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs), followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) of them, which were intersected with Anoikis-related genes (ARGs) to derive Anoikis-related differentially expressed genes (ARDEGs).
Due to the hierarchical organization of RNA structures and their pivotal roles in fulfilling RNA functions, the formation of RNA secondary structure critically influences many biological processes and has thus been a crucial research topic. This review sets out to explore the computational prediction of RNA secondary structure and its connections to RNA modifications, which have emerged as an active domain in recent years. We first examine the progression of RNA secondary structure prediction methodology, focusing on a set of representative works categorized into thermodynamic, comparative, machine learning, and hybrid approaches.
View Article and Find Full Text PDFWe introduce a computational topology-based approach with unsupervised machine-learning algorithms to estimate the database size and content of RNA-like graph topologies. Specifically, we apply graph theory enumeration to generate all 110,667 possible 2D dual graphs for vertex numbers ranging from 2 to 9. Among them, only 0.
View Article and Find Full Text PDFPeerJ
January 2025
Department of Biological Science, University of Ulsan, Ulsan, Republic of South Korea.
The genus , a group of ciliated protists, has attracted attention as a model organism due to its widespread distribution and ease of cultivation. This study examines the evolutionary patterns of the SSU rRNA secondary structure within this genus, aiming to elucidate its role in supporting evolutionary relationships and uncovering cryptic species. By predicting the secondary structure of SSU rRNA and applying the CBC (Compensatory Base Change) concept analysis, we examined 69 species of the genus , with 57 SSU rRNA gene sequences retrieved from GenBank and 12 newly sequenced specimens from South Korea.
View Article and Find Full Text PDFStroke
January 2025
Department of Experimental Neurology, Center for Stroke Research Berlin (CSB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany (M.F., S.B., S.M., K.W., M.E., A.M., U.D., C.S.).
Background: Contrary to the common belief, the most commonly used laboratory C57BL/6J mouse inbred strain presents a distinctive genetic and phenotypic variability, and for several traits, the genotype-phenotype link remains still unknown. Recently, we characterized the most important stroke survival factor such as brain collateral plasticity in 2 brain ischemia C57BL/6J mouse models (bilateral common carotid artery stenosis and middle cerebral artery occlusion) and observed a Mendelian-like fashion of inheritance of the posterior communicating artery (PcomA) patency. Interestingly, a copy number variant (CNV) spanning locus was reported to segregate in an analogous Mendelian-like pattern in the C57BL/6J colonies of the Jackson Laboratory.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!