This paper reviews and analyzes key features from cassava breeding at the International Center for Tropical Agriculture (CIAT) over 50 years and draws lessons for public breeding efforts broadly. The breeding team, jointly with national program partners and the private processing sector, defined breeding objectives and guiding business plans. These have evolved through the decades and currently focus on four global product profiles. The recurrent selection method also evolved and included innovations such as estimation of phenotypic breeding values, increasing the number of locations in the first stage of agronomic evaluations, gradual reduction of the duration of breeding cycles (including rapid cycling for high-heritability traits), the development of protocols for the induction of flowering, and the introduction of genome-wide predictions. The impact of cassava breeding depends significantly on the type of target markets. When roots are used for large processing facilities for starch, animal feeding or ethanol production (such as in SE Asia), the adoption of improved varieties is nearly universal and productivity at the regional scale increases significantly. When markets and relevant infrastructure are weak or considerable proportion of the production goes for local artisanal processing and on-farm consumption, the impact has been lower. The potential of novel breeding tools needs to be properly assessed for the most effective allocation of resources. Finally, a brief summary of challenges and opportunities for the future of cassava breeding is presented. The paper describes multiple ways that public and private sector breeding programs can learn from each other to optimize success.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8277603 | PMC |
http://dx.doi.org/10.1007/s00122-021-03852-9 | DOI Listing |
Plants (Basel)
December 2024
Embrapa Mandioca e Fruticultura, Nugene, Cruz das Almas 44380-000, Bahia, Brazil.
Large-scale phenotyping using unmanned aerial vehicles (UAVs) has been considered an important tool for plant selection. This study aimed to estimate the correlations between agronomic data and vegetation indices (VIs) obtained at different flight heights and to select prediction models to evaluate the potential use of aerial imaging in cassava breeding programs. Various VIs were obtained and analyzed using mixed models to derive the best linear unbiased predictors, heritability parameters, and correlations with various agronomic traits.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Nugene, Embrapa Mandioca e Fruticultura, Cruz das Almas, Bahia, Brazil.
The complexity of selecting for drought tolerance in cassava, influenced by multiple factors, demands innovative approaches to plant selection. This study aimed to identify cassava clones with tolerance to water stress by employing truncated selection and selection based on genomic values for population improvement and genotype evaluation . The Best Linear Unbiased Predictions (BLUPs), Genomic Estimated Breeding Values (GEBVs), and Genomic Estimated Genotypic Values (GETGVs) were obtained based on different prediction models via genomic selection.
View Article and Find Full Text PDFPlants (Basel)
December 2024
National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
China is a major producer of tropical crops globally, boasting rich varieties and diverse functions. Tropical crops account for two-thirds of the plant species in this country. Many crops and their products, such as oil palm, rubber, banana, sugarcane, cassava, and papaya are well known to people.
View Article and Find Full Text PDFG3 (Bethesda)
December 2024
Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
Centuries of clonal propagation in cassava (Manihot esculenta) have reduced sexual recombination, leading to the accumulation of deleterious mutations. This has resulted in both inbreeding depression affecting yield and a significant decrease in reproductive performance, creating hurdles for contemporary breeding programs. Cassava is a member of the Euphorbiaceae family, including notable species such as rubber tree (Hevea brasiliensis) and poinsettia (Euphorbia pulcherrima).
View Article and Find Full Text PDFPLoS One
December 2024
Embrapa Mandioca e Fruticultura, Nugene, Cruz das Almas, Bahia, Brazil.
The variability in genetic variance and covariance due to genotype × environment interaction (G×E) can hinder genotype selection accuracy, especially for complex traits. This study analyzed G×E interactions in cassava to identify stable, high-performing genotypes and predict agronomic performance in untested environments using factor analytic multiplicative mixed models (FAMM) within multi-environment trials (METs). We evaluated 22 cassava genotypes for fresh root yield (FRY), dry root yield (DRY), shoot yield (ShY), and dry matter content (DMC) across 55 Brazilian environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!