A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Isolation and Characterization of Anti-Inflammatory Sorbicillinoids from the Mangrove-Derived Fungus Penicillium sp. DM815. | LitMetric

Isolation and Characterization of Anti-Inflammatory Sorbicillinoids from the Mangrove-Derived Fungus Penicillium sp. DM815.

Chem Biodivers

Institute of Traditional Chinese Medicine and Natural Products, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China.

Published: July 2021

Marine derived fungus has gained increasing ground in the discovery of novel lead compounds with potent biological activities including anti-inflammation. Here, we first report the characterization of one new sorbicillinoid (1) and fourteen known compounds (2-15) from the ethyl acetate (AcOEt) extract of a cultured mangrove derived fungus Penicillium sp. DM815 by UV, IR, HR ESI-Q-TOF MS, and NMR spectra. We then evaluated the anti-inflammatory effects of eleven sorbicillinoids (1-11) using cultured macrophage RAW264.7 cells. The results show that compound 9, and to a lesser degree compound 5, significantly inhibited the Gram-negative bacteria lipopolysaccharide (LPS)-induced upregulation of the inducible nitric oxide synthase (iNOS). Consistently, compounds 5 and 9 significantly reduced the level of nitric oxide (NO), the product of iNOS, induced by LPS. We further show that these two compounds dose-dependently inhibited LPS-triggered iNOS expression and NO production, but had no effect on proliferation of RAW264.7 cells in the presence of LPS. In conclusion, our study identifies novel and known sorbicillinoids as potent anti-inflammatory agents, holding the promise of developing novel anti-inflammation treatment in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.202100229DOI Listing

Publication Analysis

Top Keywords

fungus penicillium
8
penicillium dm815
8
derived fungus
8
raw2647 cells
8
nitric oxide
8
isolation characterization
4
characterization anti-inflammatory
4
anti-inflammatory sorbicillinoids
4
sorbicillinoids mangrove-derived
4
mangrove-derived fungus
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!