Cardiac function is highly reliant on mitochondrial oxidative metabolism and quality control. The circadian gene is critically linked to vital physiological processes including mitochondrial fission, fusion and bioenergetics; however, little is known of how the gene regulates these vital processes in the heart. Herein, we identified a putative circadian CLOCK-mitochondrial interactome that gates an adaptive survival response during myocardial ischemia. We show by transcriptome and gene ontology mapping in CLOCK Δ19/Δ19 mouse that transcriptionally coordinates the efficient removal of damaged mitochondria during myocardial ischemia by directly controlling transcription of genes required for mitochondrial fission, fusion and macroautophagy/autophagy. Loss of gene activity impaired mitochondrial turnover resulting in the accumulation of damaged reactive oxygen species (ROS)-producing mitochondria from impaired mitophagy. This coincided with ultrastructural defects to mitochondria and impaired cardiac function. Interestingly, wild type CLOCK but not mutations of CLOCK defective for E-Box binding or interaction with its cognate partner ARNTL/BMAL-1 suppressed mitochondrial damage and cell death during acute hypoxia. Interestingly, the autophagy defect and accumulation of damaged mitochondria in CLOCK-deficient cardiac myocytes were abrogated by restoring autophagy/mitophagy. Inhibition of autophagy by ATG7 knockdown abrogated the cytoprotective effects of CLOCK. Collectively, our results demonstrate that CLOCK regulates an adaptive stress response critical for cell survival by transcriptionally coordinating mitochondrial quality control mechanisms in cardiac myocytes. Interdictions that restore CLOCK activity may prove beneficial in reducing cardiac injury in individuals with disrupted circadian CLOCK. ARNTL/BMAL1: aryl hydrocarbon receptor nuclear translocator-like; ATG14: autophagy related 14; ATG7: autophagy related 7; ATP: adenosine triphosphate; BCA: bovine serum albumin; BECN1: beclin 1, autophagy related; bHLH: basic helix- loop-helix; CLOCK: circadian locomotor output cycles kaput; CMV: cytomegalovirus; COQ5: coenzyme Q5 methyltransferase; CQ: chloroquine; CRY1: cryptochrome 1 (photolyase-like); DNM1L/DRP1: dynamin 1-like; EF: ejection fraction; EM: electron microscopy; FS: fractional shortening; GFP: green fluorescent protein; HPX: hypoxia; i.p.: intraperitoneal; I-R: ischemia-reperfusion; LAD: left anterior descending; LVIDd: left ventricular internal diameter diastolic; LVIDs: left ventricular internal diameter systolic; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MFN2: mitofusin 2; MI: myocardial infarction; mPTP: mitochondrial permeability transition pore; NDUFA4: Ndufa4, mitochondrial complex associated; NDUFA8: NADH: ubiquinone oxidoreductase subunit A8; NMX: normoxia; OCR: oxygen consumption rate; OPA1: OPA1, mitochondrial dynamin like GTPase; OXPHOS: oxidative phosphorylation; PBS: phosphate-buffered saline; PER1: period circadian clock 1; PPARGC1A/PGC-1α: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; qPCR: quantitative real-time PCR; RAB7A: RAB7, member RAS oncogene family; ROS: reactive oxygen species; RT: room temperature; shRNA: short hairpin RNA; siRNA: small interfering RNA; TFAM: transcription factor A, mitochondrial; TFEB: transcription factor EB; TMRM: tetra-methylrhodamine methyl ester perchlorate; WT: wild -type; ZT: zeitgeber time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632283 | PMC |
http://dx.doi.org/10.1080/15548627.2021.1938913 | DOI Listing |
Circulation
January 2025
Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (N.V., R.T.L.).
Sheng Wu Gong Cheng Xue Bao
December 2024
National Center for Protein Sciences (Beijing), Academy of Military Medical Sciences, Beijing 100850, China.
Retinoic acid signaling pathway plays a role in regulating vertebrate development, cell differentiation, and homeostasis. As a key enzyme that catalyzes the oxidation of retinal to retinoic acid, aldehyde dehydrogenase 1 family member A2 (Aldh1a2) is involved in cardiac development, while whether it functions in heart diseases remains to be studied. In this study, we infected primary cardiomyocytes with adenovirus overexpressing (Ad-Aldh1a2) to explore the effects of overexpression on the biological function of cardiomyocytes.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, California, USA.
Conventional two-dimensional (2D) cardiomyocyte differentiation protocols create cells with limited maturity, which impairs their predictive capacity and has driven interest in three-dimensional (3D) engineered cardiac tissue models of varying maturity and scalability. Cardiac spheroids are attractive high-throughput models that have demonstrated improved functional and transcriptional maturity over conventional 2D differentiations. However, these 3D models still tend to have limited contractile and electrical maturity compared to highly engineered cardiac tissues; hence, we incorporated a library of conductive polymer microfibers in cardiac spheroids to determine if fiber properties could accelerate maturation.
View Article and Find Full Text PDFMol Med
December 2024
Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
Background: Acute myocardial infarction (AMI) remains a significant cause of global mortality, exacerbated by ischemia-reperfusion (IR) injury. Myocardial cell pyroptosis has emerged as a critical pathway influencing IR injury severity.
Methods: We aimed to investigate the cardioprotective effects of aerobic exercise on IR injury by examining the modulation of IGFBP2 and its impact on GSDME-dependent myocardial cell pyroptosis.
J Biochem Mol Toxicol
January 2025
Intensive Care Unit, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
Sevoflurane (Sev) has a cardioprotective role in myocardial ischemia/reperfusion injury (MI/RI), but its mechanism has not been fully elucidated. This study aimed to investigate whether the circ_CDR1as/miR-671-5p/HMGA1 axis mediates the cardioprotective effect of Sev in MI/RI. Cardiomyocytes underwent hypoxia/reoxygenation (H/R) treatment was used to simulate MI/RI in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!