Hepatitis B virus (HBV) is a kind of virus with the capability to induce autophagy, thereby facilitating its replication. Reducing hepatocyte autophagy is proved to be a useful way to inhibit HBV replication. Herein, we reported that p53-binding protein 2 (apoptosis-stimulating protein of p53-2, ASPP2) could attenuate HBV-induced hepatocyte autophagy in a p53-independent manner. Mechanistically, overexpressed ASPP2 binds to HSF1 in cytoplasm of HBV-infected cells, which prevents the translocation of HSF1 to nuclei, thereby inhibiting the transactivation of Atg7. By regulating the transcription of Atg7, ASPP2 reduces hepatocyte autophagy, thereby inhibiting HBV replication. Therefore, ASPP2 is a key regulator of cell autophagy, and overexpression of ASPP2 could be a novel method to inhibit HBV replication in hepatocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278078 | PMC |
http://dx.doi.org/10.1111/jcmm.16699 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!