EDU (5-Ethynyl-2'-Deoxyuridine)-Coupled Fluorescence-Intensity Analysis: Determining Absolute Parameters of the Cell Cycle.

Methods Mol Biol

Instituto de Medicina Molecular-João Lobo Antunes, Faculdade Medicina da Universidade de Lisboa, Lisbon, Portugal.

Published: August 2021

The principles and practice of a methodology of cell cycle analysis that allows the estimation of the absolute length (in units of time) of all cell cycle stages (G1, S, and G2) are detailed herein. This methodology utilizes flow cytometry to take full advantage of the excellent stoichiometric properties of click chemistry. This allows detection, via azide-fluorochrome coupling, of the modified deoxynucleoside 5-ethynyl-2'-deoxyuridine (EDU) incorporated into replicated DNA through incremental pulsing times. This methodology, which we designated as EdU-Coupled Fluorescence Intensity (E-CFI) analysis, can be applied to cell types with very distinct cell cycle features, and has shown excellent agreement with established techniques of cell cycle analysis. Useful modifications to the original protocol (Pereira et al., Oncotarget, 8:40514-40,532, 2017) have been introduced to increase flexibility in data collection and facilitate data analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-1538-6_12DOI Listing

Publication Analysis

Top Keywords

cell cycle
20
cycle analysis
8
cell
6
analysis
5
cycle
5
5-ethynyl-2'-deoxyuridine-coupled fluorescence-intensity
4
fluorescence-intensity analysis
4
analysis determining
4
determining absolute
4
absolute parameters
4

Similar Publications

Patient-derived organoids represent a novel platform to recapitulate the cancer cells in the patient tissue. While cancer heterogeneity has been extensively studied by a number of omics approaches, little is known about the spatiotemporal kinase activity dynamics. Here we applied a live imaging approach to organoids derived from 10 pancreatic ductal adenocarcinoma (PDAC) patients to comprehensively understand their heterogeneous growth potential and drug responses.

View Article and Find Full Text PDF

The colonial system of integration (CSI) provides intracolonial nutrient supply in many gymnolaemate bryozoans. In Ctenostomata, its presence is known for species with stolonal colonies, for example, vesicularioideans, but its structure is almost unexplored. The CSI is thought to be absent in alcyonidioideans and other ctenostomes.

View Article and Find Full Text PDF

Testicular ageing is accompanied by a series of morphological changes, while the features of mitochondrial dysfunction remain largely unknown. Herein, we observed a range of age-related modifications in testicular morphology and spermatogenic cells, and conducted single-cell RNA sequencing on young and old testes in Drosophila. Pseudotime trajectory revealed significant changes in germline subpopulations during ageing.

View Article and Find Full Text PDF

Effects of Aging on Glucose and Lipid Metabolism in Mice.

Aging Cell

December 2024

Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.

Aging is accompanied by multiple molecular changes that contribute to aging associated pathologies, such as accumulation of cellular damage and mitochondrial dysfunction. Tissue metabolism can also change with age, in part, because mitochondria are central to cellular metabolism. Moreover, the cofactor NAD, which is reported to decline across multiple tissues during aging, plays a central role in metabolic pathways such as glycolysis, the tricarboxylic acid cycle, and the oxidative synthesis of nucleotides, amino acids, and lipids.

View Article and Find Full Text PDF

Background: Cisplatin (DDP) resistance has long posed a challenge in the clinical treatment of lung cancer (LC). Insulin-like growth factor 2 binding protein 2 (IGF2BP2) has been identified as an oncogenic factor in LC, whereas its specific role in DDP resistance in LC remains unclear.

Results: In this study, we investigated the role of IGF2BP2 on DDP resistance in DDP-resistant A549 cells (A549/DDP) in vitro and in a DDP-resistant lung tumor-bearing mouse model in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!