Axial disorders, including postural deformities, postural instability, and gait disturbances, are among the most disabling symptoms of Parkinson's disease (PD). Equistasi®, a wearable proprioceptive stabilizer device, has been proposed as neurological rehabilitative device for this set of symptoms. To investigate the effects of the device on gait and balance, 24 participants affected by PD were enrolled in this crossover double-dummy, randomized, controlled study. Subjects were assessed four times before and after 8 weeks treatment with either active or placebo device; one-month wash-out was taken between treatments, in a 20-week timeframe. Gait analysis and instrumented Romberg test were performed with the aid of a sterofotogrammetric system and two force plates. Joint kinematics, spatiotemporal parameters of gait and center of pressure parameters were extracted. Paired T-test (p < 0.05) was adopted after evidence of normality to compare the variables across different acquisition sessions; Wilcoxon was adopted for non-normal distributions. Before and after the treatment with the active device, statistically significant improvements were observed in trunk flexion extension and in the ankle dorsi-plantarflexion. Regarding balance assessment, significant improvements were reported at the frequencies corresponding to vestibular system. These findings may open new possibilities on PD's rehabilitative interventions. Research question, tailored design of the study, experimental acquisition overview, main findings, and conclusions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11517-021-02373-3DOI Listing

Publication Analysis

Top Keywords

parkinson's disease
8
changes biomechanics
4
biomechanics induced
4
induced equistasi®
4
equistasi® parkinson's
4
disease coupling
4
coupling balance
4
balance lower
4
lower limb
4
limb joints
4

Similar Publications

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Significance: In an aging population, the number of people living with neurodegenerative disease is projected to increase. It is vital to develop reliable, noninvasive biomarkers to detect disease onset and monitor progression, and there is a growing body of research into the ocular surface as a potential source of such biomarkers.

Background: This article reviews the potential of in vivo corneal confocal microscopy and tear fluid analysis as tools for biomarker development.

View Article and Find Full Text PDF

From Europe to the World: EMA's Leadership in Alzheimer Disease Treatment.

Am J Ther

January 2025

James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH.

View Article and Find Full Text PDF

Amyotrophic Lateral Sclerosis and Parkinson's Disease: Brain Tissue Transcriptome Analysis Reveals Interactions.

Mol Neurobiol

January 2025

Hebei Medical University-Galway University Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.

This study utilises amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) human brain samples from the GEO database and employs differential expression gene (DEG) analysis to identify genes that are pivotal in both neurodegenerative diseases. Through in depth GO and KEGG enrichment analyses, we elucidated the biological functions and potential pathways associated with these DEGs. Furthermore, by constructing protein‒protein interaction networks, we highlight the significance of shared DEGs in both cellular physiology and disease contexts.

View Article and Find Full Text PDF

Neurological disorders (NDs), such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and schizophrenia, represent a complex and multifaceted health challenge that affects millions of people around the world. Growing evidence suggests that disrupted neuronal calcium signalling contributes to the pathophysiology of NDs. Additionally, calcium functions as a ubiquitous second messenger involved in diverse cellular processes, from synaptic activity to intercellular communication, making it a potential therapeutic target.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!