ArcRNAs and the formation of nuclear bodies.

Mamm Genome

Laboratory of RNA Biofunction, Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan.

Published: June 2022

Long noncoding RNAs (lncRNAs) have long been collectively and passively defined as transcripts that do not encode proteins. However, extensive functional studies performed over the last decade have enabled the classification of lncRNAs into multiple categories according to their functions and/or molecular properties. Architectual RNAs (arcRNAs) are a group of lncRNAs that serve as architectural components of submicron-scale cellular bodies or nonmembranous organelles, which are composed of specific sets of proteins and nucleic acids involved in particular molecular processes. In this review, we focus on arcRNAs that function in the nucleus, which provide a structural basis for the formation of nuclear bodies, nonmembranous organelles in the cell nucleus. We will summarize the current list of arcRNAs and proteins associated with classic and more recently discovered nuclear bodies and discuss general rules that govern the formation of nuclear bodies, emphasizing weak multivalent interactions mediated by innately flexible biomolecules.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00335-021-09881-5DOI Listing

Publication Analysis

Top Keywords

nuclear bodies
16
formation nuclear
12
bodies nonmembranous
8
nonmembranous organelles
8
bodies
5
arcrnas
4
arcrnas formation
4
nuclear
4
bodies long
4
long noncoding
4

Similar Publications

Mild behavioral impairment and its relation to amyloid load in isolated REM sleep behavior disorder.

Parkinsonism Relat Disord

January 2025

Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea. Electronic address:

Introduction: In isolated REM sleep behavior disorder (iRBD), the evidence of cognitive impairment and co-existing amyloid pathology suggests that mild behavioral impairment (MBI) may be associated with disease progression. In this study, we investigated MBI and its association with cognitive function, brain amyloid load and glucose metabolism in iRBD patients to evaluate the utility of MBI as a predictive marker of disease progression.

Methods: Patients with iRBD underwent a neuropsychological evaluation, F-florbetaben (FBB) PET, and F-fluorodeoxyglucose (FDG) PET.

View Article and Find Full Text PDF

Daily contact with considerable amounts of polystyrene nanoparticles (PSNPs) may cause harmful effects on the living organisms, through mechanisms that are not fully understood. The study aimed to evaluate the cytotoxic and genotoxic effects of PSNPs (size 200 nm and 40 nm) in mesenchymal stem cells (MSCs). In order to estimate cellular uptake and retention of nanoplastics, PSNP-treated cells have been analyzed by transmission electron microscopy.

View Article and Find Full Text PDF

Balancing RNA processing and innate immune response: Possible roles for SMN condensates in snRNP biogenesis.

Biochim Biophys Acta Gen Subj

January 2025

Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.

Biomolecular condensates like U-bodies are specialized cellular structures formed through multivalent interactions among intrinsically disordered regions. U-bodies sequester small nuclear ribonucleoprotein complexes (snRNPs) in the cytoplasm, and their formation in mammalian cells depends on stress conditions. Because of their location adjacent to P-bodies, U-bodies have been considered potential sites for snRNP storage or turnover.

View Article and Find Full Text PDF

Biomolecular Condensates in Telomere Maintenance of ALT Cancer Cells.

J Mol Biol

January 2025

Department of Biology, Carnegie Mellon University, Pittsburgh, PA 15213, USA. Electronic address:

Alternative Lengthening of Telomeres (ALT) pathway is a telomerase-independent mechanism that utilizes homology-directed repair (HDR) to sustain telomere length in specific cancers. Biomolecular condensates, such as ALT-associated promyelocytic leukemia nuclear bodies (APBs), have emerged as critical players in the ALT pathway, supporting telomere maintenance in ALT-positive cells. These condensates bring together DNA repair proteins, telomeric repeats, and other regulatory elements.

View Article and Find Full Text PDF

Reciprocal and non-reciprocal effects of clinically relevant SETBP1 protein dosage changes.

Hum Mol Genet

January 2025

Department of Human Genetics, McGill University, 3666 McTavish Street, Montreal, QC H3A 1Y2, Canada.

Many genes in the human genome encode proteins that are dosage sensitive, meaning they require protein levels within a narrow range to properly execute function. To investigate if clinically relevant variation in protein levels impacts the same downstream pathways in human disease, we generated cell models of two SETBP1 syndromes: Schinzel-Giedion Syndrome (SGS) and SETBP1 haploinsufficiency disease (SHD), where SGS is caused by too much protein, and SHD is caused by not enough SETBP1. Using patient and sex-matched healthy first-degree relatives from both SGS and SHD SETBP1 cases, we assessed how SETBP1 protein dosage affects downstream pathways in human forebrain progenitor cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!