A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The effect of plastic additives on growth and function. | LitMetric

The effect of plastic additives on growth and function.

Environ Sci Process Impacts

Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, USA55812.

Published: July 2021

Plastic waste has the potential for significant consequences on various ecosystems; yet, there are gaps in our understanding of the interaction of bacteria with polymer additives. We studied the impact of representative additive molecules to the viability and cell function of Shewanella oneidensis MR-1. Specifically, we explored the toxicity of three bisphenols (bisphenol A (BPA), bisphenol S (BPS), and tetrabromo bisphenol A (TBBPA)) and two diesters (dibutyl sebacate (DBS) and diisobutyl phthalate (DIBP)) in order to evaluate the generalizability of toxicity based on similar molecular structures. TBBPA caused significant, dose-dependent decreases in viability for acute (4 h) exposures in aerobic and anaerobic conditions. While the other 4 additives showed no significant toxicity upon 4 h exposures, chronic (2 day) anaerobic exposures revealed a significant impact to growth. BPA and BPS cause a significant decrease in growth rates for all exposure doses (8-131 μM) while DBS and DIBP had decreases in growth for the lowest exposure concentrations, though recovered to growth rates similar to the control at the highest concentrations. This highlights that S. oneidensis may have the ability to use the diesters as a carbon source if present in high enough concentrations. Riboflavin secretion was monitored as a marker of cellular health. Most additives stimulated riboflavin secretion as a survival response. Yet, there was no generalizable trend observed for these molecules, indicating the importance of considering the nuances of molecular structure to toxicity responses and the need for further work to understand the consequences of plastic waste in our environment.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1em00108fDOI Listing

Publication Analysis

Top Keywords

plastic waste
8
growth rates
8
riboflavin secretion
8
growth
5
plastic additives
4
additives growth
4
growth function
4
function plastic
4
waste potential
4
potential consequences
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!