Locomotory behaviour of early tetrapods from Blue Beach, Nova Scotia, revealed by novel microanatomical analysis.

R Soc Open Sci

McCaig Institute for Bone and Joint Health, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1.

Published: May 2021

Evidence for terrestriality in early tetrapods is fundamentally contradictory. Fossil trackways attributed to early terrestrial tetrapods long predate the first body fossils from the Late Devonian. However, the Devonian body fossils demonstrate an obligatorily aquatic lifestyle. Complicating our understanding of the transition from water to land is a pronounced gap in the fossil record between the aquatic Devonian taxa and presumably terrestrial tetrapods from the later Early Carboniferous. Recent work suggests that an obligatorily aquatic habit persists much higher in the tetrapod tree than previously recognized. Here, we present independent microanatomical data of locomotor capability from the earliest Carboniferous of Blue Beach, Nova Scotia. The site preserves limb bones from taxa representative of Late Devonian to mid-Carboniferous faunas as well as a rich trackway record. Given that bone remodels in response to functional stresses including gravity and ground reaction forces, we analysed both the midshaft compactness profiles and trabecular anisotropy, the latter using a new whole bone approach. Our findings suggest that early tetrapods retained an aquatic lifestyle despite varied limb morphologies, prior to their emergence onto land. These results suggest that trackways attributed to early tetrapods be closely scrutinized for additional information regarding their creation conditions, and demand an expansion of sampling to better identify the first terrestrial tetrapods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8150034PMC
http://dx.doi.org/10.1098/rsos.210281DOI Listing

Publication Analysis

Top Keywords

early tetrapods
16
terrestrial tetrapods
12
blue beach
8
beach nova
8
nova scotia
8
trackways attributed
8
attributed early
8
body fossils
8
late devonian
8
obligatorily aquatic
8

Similar Publications

The oldest monofenestratan pterosaur from the Queso Rallado locality (Cañadón Asfalto Formation, Toarcian) of Chubut Province, Patagonia, Argentina.

R Soc Open Sci

December 2024

SNSB, Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 Munich, Germany.

As the first group of tetrapods to achieve powered flight, pterosaurs first appeared in the Late Triassic. They proliferated globally, and by the Late Jurassic through the Cretaceous, the majority of these taxa belonged to the clade Monofenestrata (which includes the well-known Pterodactyloidea as its major subclade), typified by their single undivided fenestra anterior to the orbit. Here, a new taxon gen.

View Article and Find Full Text PDF

Members of the CD28 family are critical for the control of immune cell activation. While CD28 and CTLA4 were previously identified in teleost fish, most members of the CD28 family have been described only in tetrapods. Using a comparative genomics approach, we found (co)orthologs of all members of the CD28 family both in Chondrichthyes and basal Osteichthyes groups, but not in Agnathans.

View Article and Find Full Text PDF
Article Synopsis
  • The trigeminus nerve (cranial nerve V) plays a vital role in transmitting facial sensory information, with its branches affecting sensory receptors in the face.
  • This study examined the morphology of maxillary and mandibular canals in both modern and fossil species to understand their importance in the sensory biology of synapsids.
  • Results revealed that synapsids evolved from complex, branched canal systems for enhanced tactile sensitivity to simpler canal structures, indicating a shift in tactile functions over time.
View Article and Find Full Text PDF

The evolution of muscle spindles.

Exp Physiol

November 2024

School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia.

Muscle spindles are stretch-sensitive mechanoreceptors found in the skeletal muscles of most four-limbed vertebrates. They are unique amongst sensory receptors in the ability to regulate their sensitivity by contraction of the intrafusal muscle fibres on which the sensory endings lie. Muscle spindles have revealed a remarkable diversity of functions, including reflex action in posture and locomotion, contributing to bodily self awareness, and influencing wound healing.

View Article and Find Full Text PDF
Article Synopsis
  • Amphibians are a diverse group of tetrapods facing significant threats, with about 41% of species at risk of extinction due to various factors like habitat loss and climate change.
  • Genomic research on amphibians is critical for understanding their biology, including unique traits like tissue regeneration and adaptation, yet it has lagged behind other vertebrates due to technical challenges.
  • The newly formed Amphibian Genomics Consortium (AGC) aims to enhance global collaboration and accelerate genomic research in amphibians, with over 282 members from 41 countries already involved.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!