Colloidal quantum dots (QDs) are nanosized semiconductors whose electronic features are dictated by the quantum confinement effect. The optical, electrical, and chemical properties of QDs are influenced by their dimensions and surface landscape. The surface of II-VI and IV-VI QDs has been extensively explored; however, in-depth investigations on the surface of III-V QDs are still lagging behind. This Perspective discusses the current understanding of the surface of III-V QDs, outlines deep trap states presented by surface defects, and suggests strategies to overcome challenges associated with deep traps. Lastly, we discuss a route to create well-defined facets in III-V QDs by providing a platform for surface studies and a recently reported approach in atomistic understanding of covalent III-V QD surfaces using the electron counting model with fractional dangling bonds.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8145357 | PMC |
http://dx.doi.org/10.1039/c9sc04290c | DOI Listing |
Nanoscale
December 2024
Fujian Engineering Research Center for Solid-State Lighting, Department of Electronic Science, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361102 Fujian, China.
Quantum dot (QD) materials and their patterning technologies play a pivotal role in the full colorization of next-generation Micro-LED display technology. This article reviews the latest development in QD materials, including II-VI group, III-V group, and perovskite QDs, along with the state of the art in optimizing QD performance through techniques such as ligand engineering, surface coating, and core-shell structure construction. Additionally, it comprehensively covers the progress in QD patterning methods, such as inkjet printing, photolithography, electrophoretic deposition, transfer printing, microfluidics, and micropore filling method, and emphasizes their crucial role in achieving high precision, density, and uniformity in QD deposition.
View Article and Find Full Text PDFCryst Growth Des
November 2024
EPSRC National Epitaxy Facility, The University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ, United Kingdom.
The local droplet etching (LDE) by using indium droplets on bare InP(100) surfaces is demonstrated in a metal-organic vapor phase epitaxy (MOVPE) environment for the first time. The role of an arsenic flow applied to self-assembled metallic indium droplets is systematically studied. Increasing the arsenic supply leads to the formation of ring-like nanostructures and nanoholes.
View Article and Find Full Text PDFNanotechnology
November 2024
Department of Electronic and Electrical Engineering, University College London, London WC1 E7J, United Kingdom.
The positioning of quantum dots (QDs) in nanowires (NWs) on-axis has emerged as a controllable method of QD fabrication that has given rise to structures with exciting potential in novel applications in the field of Si photonics. In particular, III-V NWQDs attract a great deal of interest owing to their vibrant optical properties, high carrier mobility, facilitation in integration with Si and bandgap tunability, which render them highly versatile. Moreover, unlike Stranski-Krastanov or self-assembled QDs, this configuration allows for deterministic position and size of the dots, enhancing the sample uniformity and enabling beneficial functions.
View Article and Find Full Text PDFSmall
January 2025
Center for Quantum Technology, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
Integration of graphene and quantum dots (QD) is a promising route to improved material and device functionalities. Underlying the improved properties are alterations in carrier dynamics within the graphene/QD heterostructure. In this study, it is shown that graphene functions as a carrier redistribution and supply channel when integrated with InAs QDs.
View Article and Find Full Text PDFACS Sens
November 2024
Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong 266000, China.
Sulfur-containing gases, such as HS and SO, play significant roles in a multitude of biological processes affecting human life and health. Precise and efficient detection of these gases is therefore crucial for advancing one's understanding of their biological roles and developing effective diagnostic strategies. Fluorescent sensing offers a highly sensitive and versatile approach for detecting these gases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!