Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Wavelength-selective thermal devices have great applications in concentrating solar power systems, high-temperature thermoelectric systems, and solar thermophotovoltaics (STPVs). Lack of high-temperature stability and spectrally selective emissivity in different wavelength regions limits their efficiency. We propose a one-dimensional HfO/AlO-W nanocomposites/W/AlO/W multilayered photonic structure as potential wavelength selective thermal devices, and theoretically investigate the emission properties of the proposed Mie-resonance metamaterials from visible (VIS) to midinfrared (MIR) region. HfO thin layer is introduced to serve as an antireflection coating film and W layer acts as an IR reflection layer that enhances the absorptivity/emissivity in VIS and near-infrared (NIR) region while reducing the MIR emission simultaneously. Effects of geometric parameters are discussed, such as different radii and volume fractions of W nanoparticles, the thickness of AlO-W nanocomposites, and HfO thin film. The proposed thermal absorber and emitter exhibit nearly unity absorptance in both VIS and NIR regions, while the emittance approaches zero in the MIR region. The selective absorption/emission window is tunable by varying geometric parameters. The proposed solar thermal devices have great potentials in engineering applications such as STPVs and solar thermoelectric generator due to flexibility of geometric parameters and ease of fabrication.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8171298 | PMC |
http://dx.doi.org/10.1117/1.jpe.9.032708 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!