Total Skin Electron Therapy (TSET) utilizes high-energy electrons to treat cancers on the entire body surface. The otherwise invisible radiation beam can be observed via the optical Cherenkov photons emitted from interaction between the high-energy electron beam and tissue. Cherenkov emission can be used to evaluate the dose uniformity on the surface of the patient in real-time using a time-gated intensified camera system. Each patient was monitored during TSET by in-vivo detectors (IVD) as well as Scintillators. Patients undergoing TSET in various conditions (whole body and half body) were imaged and analyzed. A rigorous methodology for converting Cherenkov intensity to surface dose as products of correction factors, including camera vignette correction factor, incident radiation correction factor, and tissue optical properties correction factor. A comprehensive study has been carried out by inspecting various positions on the patients such as vertex, chest, perineum, shins, and foot relative to the umbilicus point (the prescription point).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8171222PMC
http://dx.doi.org/10.1117/12.2583939DOI Listing

Publication Analysis

Top Keywords

correction factor
12
total skin
8
skin electron
8
electron therapy
8
dose uniformity
8
cherenkov
4
cherenkov imaging
4
imaging total
4
therapy evaluation
4
evaluation dose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!