Role of insulin/glucagon ratio and cell redox state in the hyperglycaemia induced by exposure to a 60-Hz magnetic field in rats.

Sci Rep

Department of Cell Biology and Development, Institute of Cellular Physiology, Universidad Nacional Autónoma de México (UNAM), Ave. Universidad # 3000, Apdo. Postal 70-243, Coyoacán, 04510, Mexico City, Mexico.

Published: June 2021

The exposure to extremely low-frequency electromagnetic fields (EMFs) could adversely affect the endocrine system and cellular proliferative response. Nonetheless, the use of 60-Hz EMFs in the form of magneto-therapy exerts beneficial actions on human health but can also induce hyperglycaemia. Therefore, the present study was aimed to search for metabolic responses of fed or fasted male rats to a single EMF exposure. We performed a 15 min-single exposure to 60-Hz (3.8 mT, intensity) EMF, and determined serum levels of glucose, lipids, and indicators of cellular redox state and energy parameters. A single exposure to a 60-Hz EMF induced hyperglycaemia in both animal groups, and an attenuated second serum insulin peak. The 60-Hz EMF also decreased free fatty acids and lactate serum levels, oppositely increasing pyruvate and acetoacetate levels. Significant increases in blood glucose level and rat's glucose metabolism were related to a more oxidized cellular redox state and variations in insulin and glucagon secretion. The 60-Hz EMF's effects were not modified in animals previously subjected to chronic EMFs exposure (14 days). In conclusion, increased serum glucose levels and glucose metabolism induced by a single 60-Hz EMF exposure were closely related to the cellular redox state and the insulin/glucagon ratio.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8175349PMC
http://dx.doi.org/10.1038/s41598-021-91228-wDOI Listing

Publication Analysis

Top Keywords

redox state
16
exposure 60-hz
12
cellular redox
12
60-hz emf
12
insulin/glucagon ratio
8
emf exposure
8
serum levels
8
levels glucose
8
glucose metabolism
8
exposure
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!