New neurons continuously arise from neural progenitor cells in the dentate gyrus of the adult hippocampus to support ongoing learning and memory formation. To generate functional adult-born neurons, neural progenitor cells proliferate to expand the precursor cell pool and differentiate into neurons. Newly generated cells then undergo postmitotic maturation to migrate to their final destination and develop elaborate dendritic branching, which allows them to receive input signals. Little is known about factors that regulate neuronal differentiation, migration, and dendrite maturation during adult hippocampal neurogenesis. Here, we show that the transcriptional repressor protein capicua (CIC) exhibits dynamic expression in the adult dentate gyrus. Conditional deletion of Cic from the mouse dentate gyrus compromises the adult neural progenitor cell pool without altering their proliferative potential. We further demonstrate that the loss of Cic impedes neuronal lineage development and disrupts dendritic arborization and migration of adult-born neurons. Our study uncovers a previously unrecognized role of CIC in neurogenesis of the adult dentate gyrus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8175746PMC
http://dx.doi.org/10.1038/s41598-021-91168-5DOI Listing

Publication Analysis

Top Keywords

dentate gyrus
16
adult-born neurons
12
neural progenitor
12
progenitor cells
8
cell pool
8
adult dentate
8
neurons
5
adult
5
capicua regulates
4
regulates development
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!