AI Article Synopsis

  • Despite extensive research, many human kinases remain undrugged, highlighting the need for effective methods to discover new compound-kinase interactions.
  • This study benchmarks various predictive algorithms for kinase inhibitor potencies using unpublished bioactivity data, finding that ensemble models outperform single-dose assays.
  • The research identifies unexpected activities in lesser-studied kinases, and provides open-source resources that enhance our understanding of druggable kinases.

Article Abstract

Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound-kinase interactions for novel and potent activities. Here, we carry out a crowdsourced benchmarking of predictive algorithms for kinase inhibitor potencies across multiple kinase families tested on unpublished bioactivity data. We find the top-performing predictions are based on various models, including kernel learning, gradient boosting and deep learning, and their ensemble leads to a predictive accuracy exceeding that of single-dose kinase activity assays. We design experiments based on the model predictions and identify unexpected activities even for under-studied kinases, thereby accelerating experimental mapping efforts. The open-source prediction algorithms together with the bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking prediction algorithms and for extending the druggable kinome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8175708PMC
http://dx.doi.org/10.1038/s41467-021-23165-1DOI Listing

Publication Analysis

Top Keywords

prediction algorithms
8
crowdsourced mapping
4
mapping unexplored
4
unexplored target
4
target space
4
kinase
4
space kinase
4
kinase inhibitors
4
inhibitors despite
4
despite decades
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!