A review of the genotoxicity of the industrial chemical cumene.

Mutat Res Rev Mutat Res

Exponent, Inc., Center for Health Sciences, 1800 Diagonal Road, Suite 500, Alexandria, VA, 22314, United States.

Published: July 2021

The purpose of this review is to evaluate the literature on the genotoxicity of cumene (CAS # 98-82-8) and to assess the role of mutagenicity, if any, in the mode of action for cumene-induced rodent tumors. The studies reviewed included microbial mutagenicity, DNA damage/ repair, cytogenetic effects, and gene mutations. In reviewing these studies, attention was paid to their conformance to applicable OECD test guidelines which are considered as internationally recognized standards for performing these assays. Cumene was not a bacterial mutagen and did not induce Hprt mutations in CHO cell cultures. In the primary rat hepatocyte cultures, cumene induced unscheduled DNA synthesis in one study but this response could not be reproduced in an independent study using a similar protocol. In a study that is not fully compliant to the current OECD guideline, no increase in chromosomal aberrations was observed in CHO cells treated with cumene. The weight of the evidence (WoE) from multiple in vivo studies indicates that cumene is not a clastogen or aneugen. The weak positive response in an in vivo comet assay in the rat liver and mouse lung tissues is of questionable significance due to several study deficiencies. The genotoxicity profile of cumene does not match that of a classic DNA-reactive molecule and the available data does not support a conclusion that cumene is an in vivo mutagen. As such, mutagenicity does not appear to be an early key event in cumene-induced rodent tumors and alternate hypothesized non-mutagenic modes-of-action are presented. Further data are necessary to rule in or rule out a particular MoA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrrev.2021.108364DOI Listing

Publication Analysis

Top Keywords

cumene
8
cumene-induced rodent
8
rodent tumors
8
review genotoxicity
4
genotoxicity industrial
4
industrial chemical
4
chemical cumene
4
cumene purpose
4
purpose review
4
review evaluate
4

Similar Publications

Ethyltoluenes Regulate Inflammatory and Cell Fibrosis Signaling in the Liver Cell Model.

Toxics

November 2024

The Julius L. Chambers Biomedical/Biotechnology Research Institute (JLC-BBRI), North Carolina Central University (NCCU), Durham, NC 27707, USA.

Crude oil naphtha fraction C9 alkylbenzenes consist of trimethylbenzenes, ethyltoluenes, cumene, and n-propylbenzene. The major fraction of C9 alkylbenzenes is ethyltoluenes (ETs) consisting of three isomers: 2-ethyltoluene (2-ET), 3-ethyltoluene (3-ET), and 4-ethyltoluene (4-ET). Occupational and environmental exposure to ETs can occur via inhalation and ingestion and cause several health problems.

View Article and Find Full Text PDF

Functional Characterization of RseC in the SoxR Reducing System and Its Role in Oxidative Stress Response in .

J Microbiol Biotechnol

December 2024

Laboratory of Molecular Microbiology, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea.

The reducing system of SoxR consists of a putative electron transfer system encoded by the operon, RseC encoded from the unlinked operon, and ApbE. RseC is composed of two transmembrane helices, with both the N-terminal and C-terminal domains located in the cytoplasm. The N-terminal domain has a four-cysteine motif, CXCXCXC, in the cytoplasm, with the latter three cysteines highly conserved in RseC homologs, allowing the SoxR reducer complex to function in .

View Article and Find Full Text PDF

Features of gas chromatographic analysis of thermally unstable compounds.

J Chromatogr A

January 2025

St. Petersburg State University, Institute for Chemistry, Universitetskii ave., 26, St. Petersburg 198504, Russia.

Confirming the stability of analytes during gas chromatographic (GC) analysis is an important criterion, especially for previously uncharacterized compounds. However, the variations of absolute peak areas at different injector temperatures usually do not allow us to reveal the thermal instability of analytes during GC analysis. Such variations may be caused by peak area known discrimination typical for using capillary columns, especially at low split injection.

View Article and Find Full Text PDF

(1) Background: This study set out to develop a series of simple, novel, rapid methods for assessing different forms of antioxidant activity. (2) Methods: An ABTS platform was used to engineer: (i) an electrochemical post-activation assay to assess free radical scavenging activity; (ii) an electrochemical pre-activation strategy to assesses the suppression of free radical formation; (iii) a horseradish peroxidase-mediated oxidation system to monitor hydrogen peroxide scavenging activity and (iv) a cumene peroxide-hematin system to determine the ability of samples to scavenge the mixture of organic peroxides and peroxyl and alkoxyl radicals generated in the presence of these reagents. Each assay was assessed against a panel of candidate antioxidant compounds to determine their relative activities and specificities.

View Article and Find Full Text PDF

Mutations Selectively Evolving Peroxidase Activity Among Alternative Catalytic Functions of Human Glutathione Transferase P1-1.

Antioxidants (Basel)

November 2024

Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, SE-10691 Stockholm, Sweden.

Glutathione transferases are detoxication enzymes with broad catalytic diversity, and small alterations to the protein's primary structure can have considerable effects on the enzyme's substrate selectivity profile. We demonstrate that two point mutations in glutathione transferase P1-1 suffice to generate 20-fold enhanced non-selenium-dependent peroxidase activity indicating a facile evolutionary trajectory. Designed mutant libraries of the enzyme were screened for catalytic activities with alternative substrates representing four divergent chemistries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!