Multifunctional polymeric micellar nanomedicine in the diagnosis and treatment of cancer.

Mater Sci Eng C Mater Biol Appl

National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, An Institute of National Importance, Government of India, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India. Electronic address:

Published: July 2021

Polymeric micelles are a prevalent topic of research for the past decade, especially concerning their fitting ability to deliver drug and diagnostic agents. This delivery system offers outstanding advantages, such as biocompatibility, high loading efficiency, water-solubility, and good stability in biological fluids, to name a few. The multifunctional polymeric micellar architect offers the added capability to adapt its surface to meet the looked-for clinical needs. This review cross-talks the recent reports, proof-of-concept studies, patents, and clinical trials that utilize polymeric micellar family architectures concerning cancer targeted delivery of anticancer drugs, gene therapeutics, and diagnostic agents. The manuscript also expounds on the underlying opportunities, allied challenges, and ways to resolve their bench-to-bedside translation for allied clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2021.112186DOI Listing

Publication Analysis

Top Keywords

polymeric micellar
12
multifunctional polymeric
8
diagnostic agents
8
micellar nanomedicine
4
nanomedicine diagnosis
4
diagnosis treatment
4
treatment cancer
4
cancer polymeric
4
polymeric micelles
4
micelles prevalent
4

Similar Publications

Choline-acetyltransferase (ChAT) is the key cholinergic enzyme responsible for the biosynthesis of acetylcholine (ACh), a crucial signaling molecule with both canonical neurotransmitter function and auto- and paracrine signaling activity in non-neuronal cells, such as lymphocytes and astroglia. Cholinergic dysfunction is linked to both neurodegenerative and inflammatory diseases. In this study, we investigated a serendipitous observation, namely that the catalytic rate of human recombinant ChAT (rhChAT) protein greatly differed in buffered solution in the presence and absence of Triton X-100 (TX100).

View Article and Find Full Text PDF

In the present study, the mixed micellization behavior of gemini surfactant-1, 5-bis (N-hexadecyl- N, N-dimethylammonium) pentane dibromide (G5) with non-ionic surfactant triton X-100 (TX-100) was investigated in the micellar phase by utilizing the conductometric technique. The deviation of ideal critical micelle concentration (cmc*) from experimental critical micelle concentration (cmc) has been estimated using well-known Clint's theory of mixed micelles. The regular solution approximation was used to determine the interaction parameter (β) and found to be negative.

View Article and Find Full Text PDF

A rapid, facile, and green spectrofluorometric method was developed for the concurrent precise estimation of itraconazole and ibuprofen. The developed method involved the use of Tween-80 micelle as a green sample matrix for the efficient assay of the analytes of interest. Besides the greenness of Tween-80, it significantly enhanced the native fluorescence of itraconazole by about 450%.

View Article and Find Full Text PDF

A tumor-targeting porphyrin-micelle with enhanced STING agonist delivery and synergistic photo-/immuno- therapy for cancer treatment.

Acta Biomater

December 2024

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China; National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

The activation of STING pathway has emerged as a promising strategy in cancer immunotherapy. However, challenges associated with unfavorable physicochemical properties and potential off-target toxicities have limited the application of STING agonists. Here, we develop an amphiphilic and cationic charged porphyrin-polymer to electrostatically load the STING agonist (MSA-2) within a micellar structure, thereby enhancing carrier compatibility and drug-loading content of MSA-2.

View Article and Find Full Text PDF

Gold nanoparticles (GNPs) encapsulated in amphiphilic block copolymers are a promising system for numerous biomedical applications, although critical information on the effects of various preparation variables on the structure and properties of this unique type of nanomaterial is currently missing from the literature. In this research, we synthesized GNPs functionalized with thiol-terminated polycaprolactone (PCL-GNPs) before encapsulating them into poly(ε-caprolactone)--poly(ethylene glycol) (PCL--PEG) micellar nanoparticles via nanoprecipitation to yield GNP-loaded polymeric nanoparticles (GNP-PNPs). We explored the role of different manufacturing variables (water volume, PCL--PEG to PCL-GNP ratio, and PEG block length) on the sizes, morphologies, GNP occupancies, colloidal gold concentrations, and time stability of GNP-PNPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!