Background: IgA nephropathy(IgAN)) is the common pathological type of glomerular diseases. The role of gut microbiota in mediating "gut-IgA nephropathy" has not received sufficient attention in the previous studies. The purpose of this study was to investigate the changes of fecal short-chain fatty acids(SCFAs), a metabolite of the intestinal microbiota, in patients with IgAN and its correlation with intestinal flora and clinical indicators, and to further investigate the role of the gut-renal axis in IgAN.
Methods: There were 29 patients with IgAN and 29 normal control subjects recruited from January 2018 to May 2018. The fresh feces were collected. The fecal SCFAs were measured by gas chromatography/mass spectrometry and gut microbiota was analysed by16S rDNA sequences, followed by estimation of α- and β-diversity. Correlation analysis was performed using the spearman's correlation test between SCFAs and gut microbiota.
Results: The levels of acetic acid, propionic acid, butyric acid, isobutyric acid and caproic acid in the IgAN patients were significantly reduced compared with control group(P < 0.05). Butyric acid(r=-0.336, P = 0.010) and isobutyric acid(r=-0.298, P = 0.022) were negatively correlated with urea acid; butyric acid(r=-0.316, P = 0.016) was negatively correlated with urea nitrogen; caproic acid(r=-0.415,P = 0.025) showed negative correlation with 24-h urine protein level.Exemplified by the results of α-diversity and β-diversity, the intestinal flora of IgAN patients was significantly different from that of the control group. Acetic acid was positively associated with c_Clostridia(r = 0.357, P = 0.008), o_Clostridiales(r = 0.357, P = 0.008) and g_Eubacterium_coprostanoligenes_group(r = 0.283, P = 0.036). Butyric acid was positively associated with g_Alistipes (r = 0.278, P = 0.040). The relative abundance of those were significantly decreased in IgAN group compared to control group.
Conclusions: The levels of fecal SCFAs in the IgAN patients were reduced, and correlated with clinical parameters and gut microbiota, which may be involved in the pathogenesis of IgAN, and this finding may provide a new therapeutic approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8173972 | PMC |
http://dx.doi.org/10.1186/s12882-021-02414-x | DOI Listing |
Microbiome
January 2025
Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany.
Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.
Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.
Inn Med (Heidelb)
January 2025
Medizinische Klinik 2, Ludwig-Maximilians-Universität München, Marchioninistraße 15, 83477, München, Deutschland.
Background: In patients with inflammatory bowel diseases (IBD), functional complaints frequently persist after the clearing of inflammation and are clinically difficult to distinguish from symptoms of inflammation. In recent years, the influence of bidirectional communication between the gut and brain on gut physiology, emotions, and behavior has been demonstrated.
Research Questions: What mechanisms underlie the development of functional gastrointestinal complaints in patients with irritable bowel syndrome (IBS) and IBD? What therapeutic approaches arise from this?
Materials And Methods: Narrative review.
Probiotics Antimicrob Proteins
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab, 160062, India.
Recent evidence links gut microbiota alterations to neurodegenerative disorders, including Parkinson's disease (PD). Replenishing the abnormal composition of gut microbiota through gut microbiota-based interventions "prebiotics, probiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT)" has shown beneficial effects in PD. These interventions increase gut metabolites like short-chain fatty acids (SCFAs) and glucagon-like peptide-1 (GLP-1), which may protect dopaminergic neurons via the gut-brain axis.
View Article and Find Full Text PDFNPJ Regen Med
January 2025
Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
Gut microbiota affect transplantation outcomes; however, the influence of immunosuppression and cell therapy on the gut microbiota in cardiovascular care remains unexplored. We investigated gut microbiota dynamics in a nonhuman primate (NHP) cardiac ischemia/reperfusion model while under immunosuppression and receiving cell therapy with human induced pluripotent stem cell (hiPSC)-derived endothelial cells (EC) and cardiomyocytes (CM). Both immunosuppression and EC/CM co-treatment increased gut microbiota alpha diversity.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biological Sciences, Wellesley College, Wellesley, MA, USA.
Characterizing the dynamics of microbial community succession in the infant gut microbiome is crucial for understanding child health and development, but no normative model currently exists. Here, we estimate child age using gut microbial taxonomic relative abundances from metagenomes, with high temporal resolution (±3 months) for the first 1.5 years of life.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!