Cell Viability Assays in Three-Dimensional Hydrogels: A Comparative Study of Accuracy.

Tissue Eng Part C Methods

Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.

Published: July 2021

Three-dimensional (3D) cell culture systems, such as tumor organoids and multicellular tumor spheroids, have been developed in part as a result of major advances in tissue engineering and biofabrication techniques. 3D cell culture offers great capabilities in drug development, screening, testing, and precision medicine owing to its physiological accuracy. However, since the inception of 3D systems, few methods have been reported to successfully analyze cell viability quantitatively within hydrogel constructs. In this study, we describe and compare commercially available viability assays developed for two-dimensional (2D) applications for use in 3D constructs composed of organic, synthetic, or hybrid hydrogel formulations. We utilized Promega's CellTiter-Glo, CellTiter-Glo 3D, and CellTiter 96 MTS Assay along with Thermo Fisher's PrestoBlue assay to determine if these assays can be used accurately in 3D systems. Compared with direct cell viability commonly used in 2D cell culture, our results show cellular health output inaccuracies among each assay in differing hydrogel formulations. Our results should inform researchers of potential errors when using cell viability measurements in 3D cultures and conclude that microscopic imaging should be used, in combination, for validation. Impact statement Three-dimensional (3D) tissue organoids models are a valuable tool not only for studying drug toxicity but also for understanding human embryonic development, intra-tissue morphogenesis, and mechanisms of disease. In cancer organoids, such 3D models may be used for preclinical chemotherapy screening and for understanding cell death and viability mechanisms under physiologically relevant conditions. Cell viability assays are necessary for assessing the effect of biological reagents on cellular health and have been used on cell cultures for many years. With the increase of 3D systems in cellular biology research to determine therapeutic efficacy, two-dimensional assays that measure cell viability are being used outside their intended use on 3D constructs. In this study, we assess the accuracy of using various commercially available cell viability assays on different 3D hydrogel constructs to help researchers understand expected variability in their experimentation along microscopic imaging validation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309413PMC
http://dx.doi.org/10.1089/ten.TEC.2021.0060DOI Listing

Publication Analysis

Top Keywords

cell viability
28
viability assays
16
cell
12
cell culture
12
viability
8
hydrogel constructs
8
constructs study
8
hydrogel formulations
8
cellular health
8
microscopic imaging
8

Similar Publications

Purpose: Immune checkpoint inhibitors (ICIs) are now first-line therapy for most patients with recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC), and cetuximab is most often used as subsequent therapy. However, data describing cetuximab efficacy in the post-ICI setting are limited.

Methods: We performed a single-institution retrospective analysis of patients with R/M HNSCC treated with cetuximab, either as monotherapy or in combination with chemotherapy, after receiving an ICI.

View Article and Find Full Text PDF

Advances in RNA editing in hematopoiesis and associated malignancies.

Blood

January 2025

State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Center for Stem Cell Medicine,, Tianjin, China.

Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the Adenosine Deaminase Acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs to affect their functions.

View Article and Find Full Text PDF

Follicular lymphoma is the most common subtype of indolent lymphoma. Despite multiple trials over the past decade showing improved progression-free survival with new first-line therapeutic strategies -such as anti-CD20 maintenance therapy and new glycoengineered anti-CD20 antibodies- no standardized approach has been widely adopted in routine clinical practice. Several factors may explain this, including the increased incidence of infectious adverse events associated with these therapies, particularly during the COVID-19 pandemic, and the lack of overall survival benefit despite long-term follow-up.

View Article and Find Full Text PDF

Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. Identity of specific embryokines that enhance competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate effects of three putative embryokines in cattle on embryonic development to the blastocyst stage.

View Article and Find Full Text PDF

Bacterial cytokinesis begins with polymerization of the tubulin homologue FtsZ into a ring-like structure at midcell, the Z-ring, which recruits the late cell division proteins that synthesize the division septum. Assembly of FtsZ is carefully regulated and supported by a dozen conserved cell division proteins. Generally, these proteins are not essential, but removing more than one is in many cases lethal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!