The energy band alignments and associated material properties at the contacts between metal and two-dimensional (2D) semiconducting transition metal dichalcogenide (SCTMD) films determine the important traits in 2D SCTMD-based electronic and optical device applications. In this work, we realize 2D vertical diodes with asymmetric metal-SCTMD contact areas where currents are dominated by the contact-limited charge flows in the transport regimes of Fowler-Nordheim tunneling and Schottky emission. With straightforward current-voltage characteristics, we can accurately evaluate the interface parameters such as Schottky barrier heights and the vertical effective masses of tunneling charges. In particular, the differing contact areas and resultant current rectifications allow us to address specific Schottky barrier locations with respect to the conduction and valence band edges of 2D semiconducting WSe, WS, MoSe, and MoS, thereby determining whether -type holes or -type electrons become the majority charge carriers in the SCTMD devices. We demonstrate that our experimental and analytical approaches can be utilized as a simple but powerful material metrology to qualitatively and quantitatively evaluate various metal-SCTMD contacts.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c07905DOI Listing

Publication Analysis

Top Keywords

vertical diodes
8
diodes asymmetric
8
contact areas
8
schottky barrier
8
highly efficient
4
efficient experimental
4
experimental approach
4
approach evaluate
4
metal
4
evaluate metal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!