Occurrence, distribution and ecological risk assessment of polycyclic aromatic hydrocarbons and their derivatives in the effluents of wastewater treatment plants.

Sci Total Environ

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address:

Published: October 2021

In this study, we investigated the concentration distribution of parent polycyclic aromatic hydrocarbons (PAHs) and their derivatives in the effluents of 5 municipal wastewater treatment plants (WWTPs) in Beijing, China for eight months. We first identified the coexistence of PAHs, chlorinated PAHs (Cl-PAHs), brominated PAHs (Br-PAHs) and oxygenated PAHs (OPAHs) in the effluents of WWTPs. Three Cl-PAHs and 7 Br-PAHs were first found. The total concentrations of PAHs, Cl-PAHs, Br-PAHs and OPAHs ranged from 8.99-88.38, n.d.-5.70, n.d.-13.11 ng L and 15.47-106.92 ng L, respectively. In terms of temporal distributions, the total concentrations of PAHs and OPAHs presented a decreasing trend from April to November and the total concentrations of Cl-PAHs and Br-PAHs fluctuated at lower levels. These results indicated that these compounds will be long-term discharged into the receiving river. In addition, Cl-PAHs, Br-PAHs and OPAHs were likely generated by transformations occurring during chlorination disinfection. For ecological risk assessment, risk quotients of 6 compounds, indeno[1,2,3-cd] pyrene, benzo[g,h,i]perylene, dibenz[a,h]anthracene, 6-bromobenzo[a]pyrene, 1,8-dibromopyrene and 1,6-dibromopyrene, were thought to indicate high ecological risk (fish). Furthermore, Cl-PAHs, Br-PAHs and OPAHs in the effluents of WWTPs can cause more serious environmental hazards than the corresponding PAHs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.147911DOI Listing

Publication Analysis

Top Keywords

cl-pahs br-pahs
20
ecological risk
12
total concentrations
12
br-pahs opahs
12
risk assessment
8
polycyclic aromatic
8
aromatic hydrocarbons
8
derivatives effluents
8
wastewater treatment
8
treatment plants
8

Similar Publications

Unintentionally-produced persistent organic pollutants in the aquatic environment contaminated from historical chlor-alkali production.

Environ Pollut

November 2024

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Article Synopsis
  • Historical chlor-alkali production has contaminated Ya-Er Lake, China, with harmful persistent organic pollutants, particularly in sediment, lotus plants, and fish samples.
  • The study found significantly higher concentrations of pollutants like PAHs and their chlorinated/brominated versions in dredged sediments compared to fresh lake sediments, indicating sustained environmental contamination.
  • While current dietary intake of some pollutants through fish consumption appears low-risk, the presence of polychlorinated naphthalenes (PCNs) raises health concerns, necessitating ongoing monitoring and risk management strategies.
View Article and Find Full Text PDF

Profiles, exposure assessment and expanded screening of PAHs and their derivatives in one petroleum refinery facility of China.

J Environ Sci (China)

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China; Hubei Key Laboratory of Environmental and Health Effects of Persistence Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China.

This study investigated environmental distribution and human exposure of polycyclic aromatic hydrocarbons (PAHs) and their derivatives in one Chinese petroleum refinery facility. It was found that, following with high concentrations of 16 EPA PAHs (∑Parent-PAHs) in smelting subarea of studied petroleum refinery facility, total derivatives of PAHs [named as XPAHs, including nitro PAHs (NPAHs), chlorinated PAHs (Cl-PAHs), and brominated PAHs (Br-PAHs)] in gas (mean= 1.57 × 10 ng/m), total suspended particulate (TSP) (mean= 4.

View Article and Find Full Text PDF

Identification and seasonal variation of specific particulate bound (halogenated) polycyclic aromatic hydrocarbons in air from different metal industrial parks in Northwest China.

Environ Sci Pollut Res Int

June 2024

Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, P.R. China.

During the process of industrial heating, a large amount of polycyclic aromatic hydrocarbons (PAHs) and their halogenated compounds (Cl/Br-PAHs) can be formed. However, there is still limited understanding of the chemicals from different metal smelting industrial parks. This study evaluated the seasonal variations, composition profiles, and source allocations of the atmospheric particulate-bound PAHs and Cl/Br-PAHs in different metal industrial parks in a typical industrial city in northwest China.

View Article and Find Full Text PDF

Occurrence of halogenated organic contaminants in surface sediments of the Yangtze River estuary and its adjacent marine area.

Environ Res

June 2024

Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China.

Halogenated organic contaminants, such as chlorinated and brominated polycyclic aromatic hydrocarbons (Cl/Br-PAHs), are some of the most important emerging environmental pollutants. However, empirical data on Cl/Br-PAHs in estuarine and marine ecosystems are limited, rendering assessments of Cl/Br-PAH contamination in estuarine and offshore environments uncertain. Here the occurrence, sources, and ecological risks of 7 Cl-PAHs and 18 Br-PAHs were determined in surface sediments of the Yangtze River Estuary (YRE), a highly urbanized and industrialized area, and its adjacent marine area.

View Article and Find Full Text PDF

Historical trends of polycyclic aromatic hydrocarbons (PAHs) contamination were reconstructed from eleven sediment cores located in intertidal zones of the Yellow and Bohai seas for a period encompassing the last 80 years. The analysis encompassed 15 traditional PAHs (t-PAHs), 9 emerging PAHs (e-PAHs), and 30 halogenated PAHs (Hl-PAHs), including 10 chlorinated PAHs (Cl-PAHs) and 20 brominated PAHs (Br-PAHs). Concentrations of target PAHs were highest in industrial and municipal areas situated along the coast of the Bohai Sea, including Huludao, Yingkou, Tianjin, and Dandong, constituting a substantial mass inventory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!