Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The relevance of contextual factors in shaping neural mechanisms underlying visceral pain-related fear learning remains elusive. However, benign interoceptive sensations, which shape patients' clinical reality, may context-dependently become conditioned predictors of impending visceral pain. In a novel context-dependent interoceptive conditioning paradigm, we elucidated the putative role of the central fear network in the acquisition and extinction of pain-related fear induced by interoceptive cues and pain-predictive contexts. In this fMRI study involving rectal distensions as a clinically-relevant model of visceroception, N = 27 healthy men and women underwent differential conditioning. During acquisition training, visceral sensations of low intensity as conditioned stimuli (CS) predicted visceral pain as unconditioned stimulus (US) in one context (Con), or safety from pain in another context (Con). During extinction training, interoceptive CS remained unpaired in both contexts, which were operationalized as images of different rooms presented in the MRI scanner. Successful contextual conditioning was supported by increased negative valence of Con compared to Con after acquisition training, which resolved after extinction training. Although interoceptive CS were perceived as comparatively pleasant, they induced significantly greater neural activation of the amygdala, ventromedial PFC, and hippocampus when presented in Con, while contexts alone did not elicit differential responses. During extinction training, a shift from CS to context differentiation was observed, with enhanced responses in the amygdala, ventromedial, and ventrolateral PFC to Con relative to Con whereas no CS-induced differential activation emerged. Context-dependent interoceptive conditioning can turn benign interoceptive cues into predictors of visceral pain that recruit key regions of the fear network. This first evidence expands knowledge about learning and memory mechanisms underlying interoceptive hypervigilance and maladaptive avoidance behavior, with implications for disorders of the gut-brain axis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2021.118229 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!