Endophytes isolated from Panax notoginseng converted ginsenosides.

Microb Biotechnol

Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No.16 Nanxiaojie, Dongzhimennei Ave, Beijing, 100700, China.

Published: July 2021

Endophytes may participate in the conversion of metabolites within medicinal plants, influencing the efficacy of host. However, the distribution of endophytes within medicinal plants P. notoginseng and how it contributes to the conversion of saponins are not well understood. Here, we determined the distribution of saponins and endophytes within P. notoginseng compartments and further confirm the saponin conversion by endophytes. We found metabolites showed compartment specificity within P. notoginseng. Potential saponin biomarkers, such as Rb1, Rg1, Re, Rc and Rd, were obtained. Endophytic diversity, composition and co-occurrence networks also showed compartment specificity, and bacterial alpha diversity values were highest in root compartment, consistently decreased in the stem and leaf compartments, whereas those of fungi showed the opposite trend. Potential bacterial biomarkers, such as Rhizobium, Bacillus, Pseudomonas, Enterobacter, Klebsiella, Pantoea and fungal biomarkers Phoma, Epicoccum, Xylariales, were also obtained. Endophytes related to saponin contents were found by Spearman correlation analysis, and further verification experiments showed that Enterobacter chengduensis could convert ginsenoside Rg1 to F1 at a rate of 13.24%; Trichoderma koningii could convert ginsenoside Rb1 to Rd at a rate of 40.00% and to Rg3 at a rate of 32.31%; Penicillium chermesinum could convert ginsenoside Rb1 to Rd at a rate of 74.24%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313278PMC
http://dx.doi.org/10.1111/1751-7915.13842DOI Listing

Publication Analysis

Top Keywords

convert ginsenoside
12
medicinal plants
8
compartment specificity
8
ginsenoside rb1
8
rb1 rate
8
endophytes
6
endophytes isolated
4
isolated panax
4
notoginseng
4
panax notoginseng
4

Similar Publications

Immobilization of snailase and β-glucosidase on L-aspartic acid-modified magnetic amorphous ZIF for efficiently and sustainably producing ginsenoside compound K.

Int J Biol Macromol

December 2024

School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China. Electronic address:

Improving the catalytic efficiency and recyclability of immobilized enzyme remained a serious challenge in industrial applications. Enzyme immobilization in the amorphous zeolite imidazolate framework (aZIF) preserved high enzyme activity, but still faced separation difficulties and a low catalytic efficiency in practice. In this study, a one-pot co-precipitation method was used to form the enzyme-aZIF/magnetic nanoparticle (MNP) biocomposite by rapidly precipitating snailase (Sna) and β-glucosidase (β-G) with metal/ligand on MNP and modifying with L-aspartic acid (Asp).

View Article and Find Full Text PDF

Immobilization of snailase on glutamate modified MIL-88B(Fe) to efficiently convert the rare ginsenoside CK with high enzyme recyclability and stability.

Int J Biol Macromol

November 2024

School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Engineering Research Center of Biological Resources Development and Pollution Control Universities of Shaanxi Province, Key Laboratory of Textile Dyeing Wastewater Treatment Universities of Shaanxi Province, Xi'an Polytechnic University, Xi'an 710048, PR China. Electronic address:

The carboxyl groups on MIL-88B(Fe) are crucial for the covalent immobilization of snailase, and the enzyme can convert common ginsenoside Rb1 into the rare ginsenoside compound K (CK) with higher bioavailability. The present study proposed glutamate-modified MIL-88B(Fe) for the immobilization of snailase to improve enzymatic activity and loading capacity. The surface topography characterized by SEM and CLSM indicated snailase was successfully encapsulated and uniformly distributed in the Sna@MIL-88B(Fe).

View Article and Find Full Text PDF

De Novo Biosynthesis of a Polyene-Type Ginsenoside Precursor Dammaradienol in .

ACS Synth Biol

December 2024

Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.

Typical dammarane-type ginsenosides are well-known tetracyclic triterpenoids with significant pharmacological effects including antitumor, cardiovascular protection, and neuroprotection. Polyene-type ginsenosides exhibit stronger biological activities than common ginsenosides; however, their contents are low, and most are converted from ginsenosides through a series of processing steps, resulting in higher preparation costs. In this study, a dammaradienol synthase, AarOSC20433, was identified for the first time from H.

View Article and Find Full Text PDF
Article Synopsis
  • Minor ginsenosides produced by β-glucosidase have significant biological and pharmaceutical potential, leading to the cloning and expression of a ginsenoside-hydrolyzing enzyme from Furfurilactobacillus rossiae DCYL3 in E. coli.
  • The enzyme successfully converted ginsenosides Rb1 and Gyp XVII into Rd and compound K under optimal conditions, demonstrating its effectiveness in bioconversion.
  • The bioconverted Gynostemma extract (BGE) showed increased cytotoxicity against lung cancer cells compared to the non-converted extract, while also reducing inflammation through the downregulation of pro-inflammatory genes in macrophage cells.
View Article and Find Full Text PDF

Enhanced Minor Ginsenoside Contents of Nano-Sized Black Korean Ginseng through Hot Melt Extrusion.

Materials (Basel)

September 2024

Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea.

Black ginseng (BG), a traditional medicinal herb produced through a nine-stage steaming and drying process, exhibits stronger pharmacological efficacy, including antioxidant, anti-inflammatory, and anti-cancer properties, when compared to white and red ginseng. The ginsenosides in BG are classified as major and minor types, with minor ginsenosides demonstrating superior pharmacological properties. However, their low concentrations limit their availability for research and clinical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!