Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polymer microfluidic technology is widely used in chemistry, biology, medicine, nanoparticles synthesis, and other fields. In this article, we introduce a novel method for the controllable flowing of dielectric fluid droplets. Under the action of corona discharge, the dielectric fluid droplet can be controllably driven to one or more conductive plate electrodes that are connected to the negative electrode on the substrate. Phenomena of polymerization, migration, and separation and merger are experimentally verified in detail, and the spreading speeds and steady-state time are discussed. The experimental results show that the proposed method is accurate and controllable.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c00488 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!