A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling of aquifer vulnerability index using deep learning neural networks coupling with optimization algorithms. | LitMetric

A reliable assessment of the aquifer contamination vulnerability is essential for the conservation and management of groundwater resources. In this study, a recent technique in artificial intelligence modeling and computational optimization algorithms have been adopted to enhance the groundwater contamination vulnerability assessment. The original DRASTIC model (ODM) suffers from the inherited subjectivity and a lack of robustness to assess the final aquifer vulnerability to nitrate contamination. To overcome the drawbacks of the ODM, and to maximize the accuracy of the final contamination vulnerability index, two levels of modeling strategy were proposed. The first modeling strategy used particle swarm optimization (PSO) and differential evolution (DE) algorithms to determine the effective weights of DRASTIC parameters and to produce new indices of ODVI-PSO and ODVI-DE based on the ODM formula. For strategy-2, a deep learning neural networks (DLNN) model used two indices resulting from strategy-1 as the input data. The adjusted vulnerability index in strategy-2 using the DLNN model showed more superior performance compared to the other index models when it was validated for nitrate values. Study results affirmed the capability of the DLNN model in strategy-2 to extract the further information from ODVI-PSO and ODVI-DE indices. This research concluded that strategy-2 provided higher accuracy for modeling the aquifer contamination vulnerability in the study area and established the efficient applicability for the aquifer contamination vulnerability modeling.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-14522-0DOI Listing

Publication Analysis

Top Keywords

contamination vulnerability
20
aquifer contamination
12
dlnn model
12
modeling aquifer
8
vulnerability
8
aquifer vulnerability
8
deep learning
8
learning neural
8
neural networks
8
optimization algorithms
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!