Aim: Predicting intra-abdominal infections (IAI) after colorectal surgery by means of clinical signs is challenging. A naïve logistic regression modeling approach has some limitations, for which reason we study two potential alternatives: the use of Bayesian networks, and that of logistic regression model.

Methods: Data from patients that had undergone colorectal procedures between 2010 and 2017 were used. The dataset was split into two subsets: (i) that for training the models and (ii) that for testing them. The predictive ability of the models proposed was tested (i) by comparing the ROC curves from days 1 and 3 with all the subjects in the test set and (ii) by studying the evolution of the abovementioned predictive ability from day 1 to day 5.

Results: In day 3, the predictive ability of the logistic regression model achieved an AUC of 0.812, 95% CI = (0.746, 0.877), whereas that of the Bayesian network was 0.768, 95% CI = (0.695, 0.840), with a p-value for their comparison of 0.097. The ability of the Bayesian network model to predict IAI does present significant difference in predictive ability from days 3 to 5: AUC(Day 3) = 0.761, 95% CI = (0.680, 0.841) and AUC(Day 5) = 0.837, 95% CI = (0.769, 0.904), with a p-value for their comparison of 0.006.

Conclusions: Whereas at postoperative day 3, a logistic regression model with imputed data should be used to predict IAI; at day 5, when the predictive ability is almost identical, the Bayesian network model should be used.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00384-021-03955-1DOI Listing

Publication Analysis

Top Keywords

predictive ability
20
logistic regression
16
bayesian network
12
colorectal surgery
8
day predictive
8
regression model
8
p-value comparison
8
network model
8
predict iai
8
ability
6

Similar Publications

deep-AMPpred: A Deep Learning Method for Identifying Antimicrobial Peptides and Their Functional Activities.

J Chem Inf Model

January 2025

School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui 230036, China.

Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years.

View Article and Find Full Text PDF

Objective: To examine the diagnostic efficacy of contrast-enhanced ultrasound (CEUS) with Sonazoid (Sonazoid-CEUS) for endometrial lesions.

Methods: In this prospective and multicenter study, data were collected from 84 patients with endometrial lesions from 11 hospitals in China. All the patients received a conventional US and Sonazoid-CEUS examination.

View Article and Find Full Text PDF

Purpose: To develop a deep learning (DL) model based on primary tumor tissue to predict the lymph node metastasis (LNM) status of muscle invasive bladder cancer (MIBC), while validating the prognostic value of the predicted aiN score in MIBC patients.

Methods: A total of 323 patients from The Cancer Genome Atlas (TCGA) were used as the training and internal validation set, with image features extracted using a visual encoder called UNI. We investigated the ability to predict LNM status while assessing the prognostic value of aiN score.

View Article and Find Full Text PDF

Data on outcomes of extracorporeal membrane oxygenation (ECMO) are limited in patients with pulmonary atresia intact ventricular septum (PAIVS). The objective of this study was to describe the use of ECMO and the associated outcomes in patients with PAIVS. We retrospectively reviewed neonates with PAIVS who received ECMO between 2009 and 2019 in 19 US hospitals affiliated with the Collaborative Research for the Pediatric Cardiac Intensive Care Society (CoRe-PCICS).

View Article and Find Full Text PDF

Purpose To validate a deep learning (DL) model for predicting the risk of prostate cancer (PCa) progression based on MRI and clinical parameters and compare it with established models. Materials and Methods This retrospective study included 1607 MRI scans of 1143 male patients (median age, 64 years; IQR, 59-68 years) undergoing MRI for suspicion of clinically significant PCa (csPCa) (International Society of Urological Pathology grade > 1) between January 2012 and May 2022 who were negative for csPCa at baseline MRI. A DL model was developed using baseline MRI and clinical parameters (age, prostate-specific antigen [PSA] level, PSA density, and prostate volume) to predict the time to PCa progression (defined as csPCa diagnosis at follow-up).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!