Study Objectives: To evaluate how change in menopausal status related to spectral analysis and polysomnographic measures of sleep characteristics.
Methods: The Study of Women's Health Across the Nation (SWAN) Ancillary Sleep Study evaluated sleep characteristics of 159 women who were initially pre- or early perimenopausal and repeated the assessment about 3½ years later when 38 were pre- or early perimenopausal, 31 late perimenopausal, and 90 postmenopausal. Participants underwent in-home ambulatory polysomnography for two to three nights. Average EEG power in the delta and beta frequency bands was calculated during NREM and REM sleep, and sleep duration, wake after sleep onset (WASO), and apnea hypopnea index (AHI) were based on visually-scored sleep.
Results: The women who transitioned to postmenopause had increased beta NREM EEG power at the second assessment, compared to women who remained pre-or early premenopausal; no other sleep measures varied by change in menopausal status. In multivariate models the associations remained; statistical controls for self-reported hot flashes did not explain findings. In secondary analysis, NREM beta power at the second assessment was greater among women who transitioned into the postmenopause after adjustments for initial NREM beta power.
Conclusions: Sleep duration and WASO did not vary by menopause transition group across assessments. Consistent with prior cross-sectional analysis, elevated beta EEG power in NREM sleep was apparent among women who transitioned to postmenopause, suggesting that independent of self-reported hot flashes, the menopausal transition is associated with physiological hyperarousal during sleep.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8598193 | PMC |
http://dx.doi.org/10.1093/sleep/zsab139 | DOI Listing |
Epilepsia
January 2025
Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
Objective: Temporal encephaloceles (TEs) are seen in patients with drug-resistant epilepsy (DRE); yet they are also common incidental findings. Variability in institutional pre-surgical epilepsy practices and interpretation of epileptogenic network localization contributes to bias in existing epilepsy cohorts with TE, and therefore the relevance of TE in DRE remains controversial. We sought to estimate effect sizes and sample sizes necessary to demonstrate clinically relevant improvements in seizure outcome with different surgical approaches.
View Article and Find Full Text PDFNeurophysiol Clin
January 2025
Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China. Electronic address:
Objective: To explore the application of the neuronal recovery model (i.e., the ABCD model derived from EEG power spectral analysis) in forecasting outcomes for patients with acute disorders of consciousness (DOC).
View Article and Find Full Text PDFMed J Malaysia
January 2025
National University of Malaysia, Faculty of Medicine, Department of Medicine, Kuala Lumpur, Malaysia.
Introduction: Stroke is a major cause of morbidity and mortality worldwide. While electroencephalography (EEG) offers valuable data on post-stroke brain activity, qualitative EEG assessments may be misinterpreted. Therefore, we examined the potential of quantitative EEG (qEEG) to identify key band frequencies that could serve as potential electrophysiological biomarkers in stroke patients.
View Article and Find Full Text PDFWearable Technol
November 2024
Embedded Systems and Robotics Lab, Tezpur University, Tezpur, Assam, India.
Electromyogram (EMG) has been a fundamental approach for prosthetic hand control. However it is limited by the functionality of residual muscles and muscle fatigue. Currently, exploring temporal shifts in brain networks and accurately classifying noninvasive electroencephalogram (EEG) for prosthetic hand control remains challenging.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Siena Brain Investigation and Neuromodulation Lab, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy.
Ketamine, a dissociative compound, shows promise in treating mood disorders, including treatment-resistant depression (TRD) and bipolar disorder (BD). Despite its therapeutic potential, the neurophysiological mechanisms underlying ketamine's effects are not fully understood. This study explored acute neurophysiological changes induced by subanesthetic doses of ketamine in BD patients with depression using electroencephalography (EEG) biomarkers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!