Recent Advancement of Pyrazole Scaffold Based Neuroprotective Agents: A Review.

CNS Neurol Disord Drug Targets

Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India.

Published: September 2022

As a source of therapeutic agents, heterocyclic nitrogen-containing compounds and their derivatives are still interesting and essential. Pyrazole, a five-member heteroaromatic ring with two nitrogen atoms, has a major impact in chemical industries as well as pharmaceutical industries. Due to its wide range of biological activities against various diseases, it has been identified as a biologically important heterocyclic scaffold. The treatment of neurological disorders has always been a difficult task in both the past and present. Therefore, identifying therapeutically effective molecules for neurological conditions remains an open challenge in biomedical research and development. For developing novel entities as neuroprotective agents, recently, pyrazole scaffold has attracted medicinal chemists worldwide. The major focus of research in this area is discovering novel molecules as neuroprotective agents with minimal adverse effects and better effectiveness in improving the neurological condition. This review mainly covers recent developments in the neuropharmacological role of pyrazole incorporated compounds, including their structural-activity relationship (SAR), which also further includes IC values (in mM as well as in μM), recent patents, and a brief history as neuroprotective agents.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871527320666210602152308DOI Listing

Publication Analysis

Top Keywords

neuroprotective agents
16
pyrazole scaffold
8
agents
5
advancement pyrazole
4
scaffold based
4
neuroprotective
4
based neuroprotective
4
agents review
4
review source
4
source therapeutic
4

Similar Publications

Nitrous oxide production via enzymatic nitroxyl from the nitrifying archaeon .

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853.

Ammonia oxidizing archaea (AOA) are among the most abundant microorganisms on earth and are known to be a major source of nitrous oxide (NO) emissions, although biochemical origins of this NO remain unknown. Enzymological details of AOA nitrogen metabolism are broadly unavailable. We report the recombinant expression, purification, and characterization of a multicopper oxidase, Nmar_1354, from the AOA .

View Article and Find Full Text PDF

Background: For severe systemic rheumatic diseases (SRDs), therapeutic plasma exchange (TPE) may be applied as a rescue therapy; it usually combined with intravenous immunoglobulin (IVIG) or intravenous methylprednisolone pulse (IVMP) in severe SRDs. However, the necessity of this combination treatment strategy in SRDs remains uncertain.

Objective: This retrospective study aimed to evaluate the effectiveness of TPE alone versus TPE combined with IVIG/IVMP in treating severe SRDs.

View Article and Find Full Text PDF

Purpose Of Review: This review evaluates current research on grape-based interventions and their impact on cognitive and mental health. It also explores the putative mechanisms by which the grape-derived compounds might modulate cognitive function. The growing prevalence of cognitive decline and mental health disorders necessitates exploring novel dietary approaches.

View Article and Find Full Text PDF

1-Methylxanthine (1-MX) is the major metabolite of caffeine and paraxanthine and might contribute to their activity. 1-MX is an adenosine receptor antagonist and increases the release and survivability of neurotransmitters; however, no study has addressed the potential physiological effects of 1-MX ingestion. The aim of this study was to compare the effect of 1-MX on memory and related biomarkers in rats compared to control.

View Article and Find Full Text PDF

Calycosin‑7‑O‑β‑D‑glucoside downregulates mitophagy by mitigating mitochondrial fission to protect HT22 cells from oxygen‑glucose deprivation/reperfusion‑induced injury.

Mol Med Rep

March 2025

Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu‑Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, P.R. China.

Calycosin‑7‑O‑β‑D‑glucoside (CG), a major active ingredient of Astragali Radix, exerts neuroprotective effects against cerebral ischemia; however, whether the effects of CG are associated with mitochondrial protection remains unclear. The present study explored the role of CG in improving mitochondrial function in a HT22 cell model of oxygen‑glucose deprivation/reperfusion (OGD/R). The Cell Counting Kit‑8 assay, flow cytometry, immunofluorescence and western blotting were performed to investigate the effects of CG on mitochondrial function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!