A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Breathable TiCT MXene/Protein Nanocomposites for Ultrasensitive Medical Pressure Sensor with Degradability in Solvents. | LitMetric

Breathable TiCT MXene/Protein Nanocomposites for Ultrasensitive Medical Pressure Sensor with Degradability in Solvents.

ACS Nano

Interdisciplinary Research Center for Artificial Intelligence, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.

Published: June 2021

Flexible, breathable, and degradable pressure sensors with excellent sensing performance are drawing tremendous attention for various practical applications in wearable artificial skins, healthcare monitoring, and artificial intelligence due to their flexibility, breathability, lightweight, decreased electronic rubbish, and environmentally friendly impact. However, traditional plastic or elastomer substrates with impermeability, uncomfortableness, mechanical mismatches, and nondegradability greatly restricted their practical applications. Therefore, the fabrication of such pressure sensors with high flexibility, facile degradability, and breathability is still a critical challenge and highly desired. Herein, we present a wearable, breathable, degradable, and highly sensitive MXene/protein nanocomposites-based pressure sensor. The fabricated MXene/protein-based pressure sensor is assembled from a breathable conductive MXene coated silk fibroin nanofiber (MXene-SF) membrane and a silk fibroin nanofiber membrane patterned with a MXene ink-printed (MXene ink-SF) interdigitated electrode, which can serve as the sensing layer and the electrode layer, respectively. The assembled pressure sensor exhibits a wide sensing range (up to 39.3 kPa), high sensitivity (298.4 kPa for 1.4-15.7 kPa; 171.9 kPa for 15.7-39.3 kPa), fast response/recovery time (7/16 ms), reliable breathability, excellent cycling stability over 10 000 cycles, good biocompatibility, and robust degradability. Furthermore, it shows great sensing performance in monitoring human psychological signals, acting as an artificial skin for the quantitative illustration of pressure distribution, and wireless biomonitoring in real time. Considering the biodegradable and breathable features, the sensor may become promising to find potential applications in smart electronic skins, human motion detection, disease diagnosis, and human-machine interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c00472DOI Listing

Publication Analysis

Top Keywords

pressure sensor
16
breathable degradable
8
pressure sensors
8
sensing performance
8
practical applications
8
silk fibroin
8
fibroin nanofiber
8
pressure
7
breathable
5
sensor
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!