Merck KGaA observed slight differences in the dissolution of Concor (bisoprolol) batches over the years. The purpose of this work was to assess the impact of in vitro dissolution on the simulated pharmacokinetics of bisoprolol using in vitro-in vivo relationship established with available in vitro dissolution and corresponding plasma concentrations-time data for several bisoprolol batches. A mechanistic absorption model/physiologically based pharmacokinetics model linked with a biopharmaceutics tool such as dissolution testing, namely, physiologically based biopharmaceutics modeling (PBBM), can be valuable in determining a dissolution "safe space." A PBBM for bisoprolol was built using in vitro, in silico, and clinical data. We evaluated potential influences of variability in dissolution of bisoprolol batches on its clinical performance through PBBM and virtual bioequivalence (BE) trials. We demonstrated that in vitro dissolution was not critical for the clinical performance of bisoprolol over a wide range of tested values. Based on virtual BE trials, safe space expansion was explored using hypothetical dissolution data. A formulation with in vitro dissolution reaching 70% dissolved in 15 min and 79.5% in 30 min was shown to be BE to classical fast dissolution of bisoprolol (>85% within 15 min), as point estimates and 90% confidence intervals of the maximum plasma concentration and area under the concentration-time curve were within the BE limits (0.8-1.25).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213417PMC
http://dx.doi.org/10.1002/psp4.12634DOI Listing

Publication Analysis

Top Keywords

vitro dissolution
16
bisoprolol batches
12
dissolution
11
physiologically based
8
based biopharmaceutics
8
biopharmaceutics modeling
8
bisoprolol
8
dissolution bisoprolol
8
clinical performance
8
vitro
5

Similar Publications

Lidocaine (LID), frequently used in dermal applications, is a nonpolar local anesthetic agent that is practically insoluble in water. The main aim of this study is to develop the nanosuspension formulation of LID using the design of experiments (DoE). The improved solubility and dissolution rate provided by nanosizing are expected to result in enhanced dermal bioavailability.

View Article and Find Full Text PDF

Combining solubilization and controlled release strategies to prepare pH-sensitive solid dispersion loaded with albendazole: and studies.

Front Vet Sci

December 2024

Guangdong Key Laboratory for Veterinary Drug Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University (SCAU), Guangzhou, China.

Albendazole (ABZ), classified as a class II basic drug under the Biopharmaceutics Classification System (BCS), is widely recognized for its therapeutic efficacy in treating and preventing trichuriasis. However, despite its clinical relevance, ABZ's oral administration presents challenges due to its poor solubility and pH sensitivity, which diminish its therapeutic effectiveness. Additionally, high dosing regimens of ABZ pose risks of developmental toxicity in animal models.

View Article and Find Full Text PDF

Formulation, Characterization, and Cytotoxic Effect of Indomethacin-Loaded Nanoparticles.

Antiinflamm Antiallergy Agents Med Chem

December 2024

Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.

Background: Indomethacin (IND), classified as class 2 in the Biopharmaceutical Classification System (BCS), has emerged as an anti-inflammatory agent with low solubility and high permeability. Widely used in the treatment of various diseases, such as rheumatoid arthritis and ankylosing spondylitis, this drug is well-known for its adverse effects, particularly in the stomach, and a short biological half-life, which is around 1.5-2 hours.

View Article and Find Full Text PDF

Objective: Alectinib HCl (ALB-HCl) is a BCS class IV molecule with low solubility and low oral bioavailability. Owing to its low bioavailability, a high dose of ALB-HCl is recommended with food to meet clinical efficacy. Thus, there is a need for a delivery system to overcome the bioavailability concerns.

View Article and Find Full Text PDF
Article Synopsis
  • Artificial bone made from calcium carbonate resorbs faster than calcium phosphate-based materials, showing potential for early bone replacement.
  • Animal studies indicate that calcium carbonate ceramics can lead to better bone formation than existing artificial options in the short term, but long-term results are inadequate due to resorption issues.
  • Adding silica to calcium carbonate ceramics regulates the resorption rate, resulting in better bone formation after 12 weeks and aligning resorption rates with bone growth more effectively.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!