Cell‑cell fusion as an important mechanism of tumor metastasis (Review).

Oncol Rep

Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China.

Published: July 2021

Cell‑cell fusion is a dynamic biological phenomenon, which plays an important role in various physiological processes, such as tissue regeneration. Similarly, normal cells, particularly bone marrow‑derived cells (BMDCs), may attempt to fuse with cancer cells to rescue them. The rescue may fail, but the fused cells end up gaining the motility traits of BMDCs and become metastatic due to the resulting genomic instability. In fact, cell‑cell fusion was demonstrated to occur in cancer and was revealed to promote tumor metastasis. However, its existence and role may be underestimated, and has not been widely acknowledged. In the present review, the milestones in cell fusion research were highlighted, the evidence for cell‑cell fusion and in cancer was evaluated, and the current understanding of the molecular mechanisms by which cell‑cell fusion occurs was summarized, to emphasize their important role in tumor metastasis. The summary provided in the present review may promote further study into this process and result in novel discoveries of strategies for future treatment of tumor metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or.2021.8096DOI Listing

Publication Analysis

Top Keywords

cell‑cell fusion
20
tumor metastasis
16
cell‑cell
5
fusion
5
fusion mechanism
4
tumor
4
mechanism tumor
4
metastasis
4
metastasis review
4
review cell‑cell
4

Similar Publications

Despite the study of BCR::ABL1-positive and -negative myeloproliferative neoplasms (MPNs) providing seminal insights into cancer biology, tumor evolution and precision oncology over the past half century, significant challenges remain. MPNs are clonal hematopoietic stem cell-derived neoplasms with heterogenous clinical phenotypes and a clonal architecture which impacts the often-complex underlying genetics and microenvironment. The major driving molecular abnormalities have been well characterized, but debate on their role as disease-initiating molecular lesions continues.

View Article and Find Full Text PDF

[Clinical characteristics and prognosis of acute erythroleukemia in children].

Zhongguo Dang Dai Er Ke Za Zhi

January 2025

Department of Children's Hematology and Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.

Objectives: To investigate the clinical characteristics and prognosis of acute erythroleukemia (AEL) in children.

Methods: A retrospective analysis was conducted on the clinical data, treatment, and prognosis of 8 children with AEL treated at the First Affiliated Hospital of Zhengzhou University from January 2013 to December 2023.

Results: Among the 7 patients with complete bone marrow morphological analysis, 4 exhibited trilineage dysplasia, with a 100% incidence of erythroid dysplasia (7/7), a 71% incidence of myeloid dysplasia (5/7), and a 57% incidence of megakaryocytic dysplasia (4/7).

View Article and Find Full Text PDF

Background: Drug response prediction is critical in precision medicine to determine the most effective and safe treatments for individual patients. Traditional prediction methods relying on demographic and genetic data often fall short in accuracy and robustness. Recent graph-based models, while promising, frequently neglect the critical role of atomic interactions and fail to integrate drug fingerprints with SMILES for comprehensive molecular graph construction.

View Article and Find Full Text PDF

Biallelic mutations in multiple EGF domain protein 10 (MEGF10) gene cause EMARDD (early myopathy, areflexia, respiratory distress and dysphagia) in humans, a severe recessive myopathy, associated with reduced numbers of PAX7 positive satellite cells. To better understand the role of MEGF10 in satellite cells, we overexpressed human MEGF10 in mouse H-2k-tsA58 myoblasts and found that it inhibited fusion. Addition of purified extracellular domains of human MEGF10, with (ECD) or without (EGF) the N-terminal EMI domain to H-2k-tsA58 myoblasts, showed that the ECD was more effective at reducing myoblast adhesion and fusion by day 7 of differentiation, yet promoted adhesion of myoblasts to non-adhesive surfaces, highlighting the importance of the EMI domain in these behaviours.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!