Piperazine skeleton in the structural modification of natural products: a review.

J Enzyme Inhib Med Chem

College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.

Published: December 2021

Piperazine moiety is a cyclic molecule containing two nitrogen atoms in positions 1 and 4, as well as four carbon atoms. Piperazine is one of the most sought heterocyclics for the development of new drug candidates with a wide range of applications. Over 100 molecules with a broad range of bioactivities, including antitumor, antibacterial, anti-inflammatory, antioxidant, and other activities, were reviewed. This article reviewed investigations regarding piperazine groups for the modification of natural product derivatives in the last decade, highlighting parameters that affect their biological activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8183565PMC
http://dx.doi.org/10.1080/14756366.2021.1931861DOI Listing

Publication Analysis

Top Keywords

modification natural
8
piperazine
4
piperazine skeleton
4
skeleton structural
4
structural modification
4
natural products
4
products review
4
review piperazine
4
piperazine moiety
4
moiety cyclic
4

Similar Publications

Influenced by urban expansion, population growth, and various socio-economic activities, land use in the Yangtze River Delta (YRD) area has undergone prominent changes. Modifications in land use have resulted in adjustments to ecological structures, leading to subsequent fluctuations in carbon storage. This study focuses on YRD region and analyzes the characteristics of land use changes in the area using land use data from 2000 to 2020, with a 10-year interval.

View Article and Find Full Text PDF

Chemical modification of naturally derived glycosaminoglycans (GAGs) expands their potential utility for applications in soft tissue repair and regenerative medicine. Here we report the preparation of a novel crosslinked chondroitin sulfate (~200 to 2000 kilodaltons) that is both soluble in aqueous solution and microfilterable. We refer to these materials as "SuperGAGs.

View Article and Find Full Text PDF

The photocatalytic conversion of CO into products such as CH and CH poses a significant challenge due to the lengthy reaction steps and the high energy barrier involved. In this study, both benzothiadiazole (BTD) and hydroxyl groups (-OH) are introduced into cobalt-based polymerized porphyrinic network (PPN) through a C-C coupling reaction. This modification of orbital energy levels that strengthens the ability of gain electrons and facilitates the charge transfer in PPN.

View Article and Find Full Text PDF

Nanomaterials-Induced Pyroptosis: Advancing Novel Therapeutic Pathways in Nanomedicine.

Small Methods

January 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China.

Pyroptosis, a form of programmed cell death characterized by cell lysis and inflammation, has significant implications for disease treatment. Nanomaterials (NMs), with their unique physicochemical properties, can precisely modulate pyroptosis, offering novel and intelligent therapeutic strategies for cancer, infectious diseases, and chronic inflammatory conditions with targeted activation and reduced systemic toxicity. This review explores the mechanisms by which NMs regulate pyroptosis, comparing molecular and NM inducers, and examines the role of intrinsic properties such as size, shape, surface charge, and chemical composition in these processes.

View Article and Find Full Text PDF

Orthobiologic injections including platelet-rich plasma (PRP) and cell-based injections are becoming increasingly popular. Evidence suggests that these therapies can be effective in certain situations. The efficacy of these injections may be more dependent on the quality of the injectate, which given their autologous nature, may be dependent on lifestyle choices like exercise, diet, and supplements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!