The use of reclaimed or treated water from urban wastewater treatment plants for irrigation has been proposed as an alternative water source to address water scarcity issues in Europe. In this paper using agro-economic modelling, we analyse if treated water available for agriculture has the potential to reduce freshwater abstraction and, consequently, water stress. Implementing exogenous treated water quantities as an additional water supply at NUTS 2 level in the CAPRI model, we found that treated water reuse is a possible alternative supply source to address water shortages with a very negligible effect on farmers' income and food production in the EU. However, the actual water reuse and water stress reduction is very limited due to high costs. Even climate change effects on water availability and precipitation failed to induce higher use. The one-size-fits-all approach modelled via a flat rate water price only encourages the reuse of treated water in a limited number of EU member states. Thus, in order to maximise the potential of reused water to address water scarcity, different rates should be used so as to ensure higher treated water volumes at lower costs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8100924PMC
http://dx.doi.org/10.1016/j.agwat.2021.106872DOI Listing

Publication Analysis

Top Keywords

treated water
28
water
19
address water
16
water scarcity
12
reuse treated
8
agriculture potential
8
climate change
8
source address
8
water stress
8
water reuse
8

Similar Publications

Peri-implant diseases, such as peri-implantitis, affect up to 47% of dental implant recipients, primarily due to biofilm formation. Current decontamination methods vary in efficacy, prompting interest in polymeric nanoparticles (NPs) for their antimicrobial and protein-specific cleaning properties. This study evaluated the efficacy of polymeric nanoparticles (NPs) in decontaminating titanium dental implants by removing proteinaceous pellicle layers and resisting recontamination.

View Article and Find Full Text PDF

Background: This video article describes the use of bone-anchored prostheses for patients with transtibial amputations, most often resulting from trauma, infection, or dysvascular disease. Large studies have shown that about half of all patients with a socket-suspended artificial limb experience limited mobility and limited prosthesis use because of socket-related problems. These problems occur at the socket-residual limb interface as a result of a painful and unstable connection, leading to an asymmetrical gait and subsequent pelvic and back pain.

View Article and Find Full Text PDF

Water-Soluble Mn(III)-Porphyrins with High Relaxivity and Photosensitization.

Chem Biomed Imaging

January 2025

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland.

Three water-soluble Mn(III)-porphyrin complexes with cationic pyridyl side groups bearing COOH- or OH-terminated carbon chains in the meta or para positions have been synthesized as probes for both magnetic resonance imaging (MRI) and photodynamic therapy (PDT). The complexes , , and are highly water-soluble, and their relaxivities range between 10 and 15 mM s, at 20-80 MHz and 298 K, 2-3 times higher than that of commercial Gd(III)-based agents. The complexes containing carboxylate () or alcoholic () side chains in the para position are endowed with higher relaxivities and have also shown efficient photoinduced DNA cleavage and singlet oxygen (O) generation.

View Article and Find Full Text PDF

Background: The increasing availability of electronic health system data and remotely-sensed environmental variables has led to the emergence of statistical models capable of producing malaria forecasts. Many of these models have been operationalized into malaria early warning systems (MEWSs), which provide predictions of malaria dynamics several months in advance at national and regional levels. However, MEWSs rarely produce predictions at the village-level, the operational scale of community health systems and the first point of contact for the majority of rural populations in malaria-endemic countries.

View Article and Find Full Text PDF

In recent decades, freshwater bodies have experienced significant stress due to the excessive disposal of dyes from textile industries and waste antibiotic discharges from pharmaceutical industries. The continuous disposal of these substances may harm the natural ecosystem and generate antibiotic resistance in living organisms. Conventional treatment facilities are inadequate in treating these contaminants effectively, leading to a focused interest in advanced technologies, such as electrooxidation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!