IKKε isoform switching governs the immune response against EV71 infection.

Commun Biol

Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.

Published: June 2021

AI Article Synopsis

  • The complex interactions between pathogens and their hosts are vital for developing effective treatments for infectious diseases.
  • During EV71 virus infection, the host IKKε gene undergoes isoform switching, where IKKε isoform 2 (IKKε v2) is increased and IKKε isoform 1 (IKKε v1) is decreased.
  • IKKε v2 enhances the activation of IRF7, leading to increased production of interferon (IFNβ) and other immune response genes, suggesting a key role for isoform switching in defending against viral infections.

Article Abstract

The reciprocal interactions between pathogens and hosts are complicated and profound. A comprehensive understanding of these interactions is essential for developing effective therapies against infectious diseases. Interferon responses induced upon virus infection are critical for establishing host antiviral innate immunity. Here, we provide a molecular mechanism wherein isoform switching of the host IKKε gene, an interferon-associated molecule, leads to alterations in IFN production during EV71 infection. We found that IKKε isoform 2 (IKKε v2) is upregulated while IKKε v1 is downregulated in EV71 infection. IKKε v2 interacts with IRF7 and promotes IRF7 activation through phosphorylation and translocation of IRF7 in the presence of ubiquitin, by which the expression of IFNβ and ISGs is elicited and virus propagation is attenuated. We also identified that IKKε v2 is activated via K63-linked ubiquitination. Our results suggest that host cells induce IKKε isoform switching and result in IFN production against EV71 infection. This finding highlights a gene regulatory mechanism in pathogen-host interactions and provides a potential strategy for establishing host first-line defense against pathogens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172566PMC
http://dx.doi.org/10.1038/s42003-021-02187-xDOI Listing

Publication Analysis

Top Keywords

ev71 infection
16
ikkε isoform
12
isoform switching
12
ikkε
8
establishing host
8
ifn production
8
production ev71
8
infection ikkε
8
infection
5
switching governs
4

Similar Publications

Background: Hand, foot, and mouth disease (HFMD) is an infectious disease that often affects children under 5 years of age. Over the past 20 years, enterovirus 71 (EV71) has become a major concern among children, especially in the Asia-Pacific region. Currently, there are no data showing the seroprevalence of HMFDs in Indonesia.

View Article and Find Full Text PDF

Inhibition of Neutral Sphingomyelinase-2 restrains Enterovirus 71 Infection by Autophagy.

Microb Pathog

January 2025

Department of Laboratory Medicine, Suzhou Mental Health Center, the Affiliated Guangji Hospital of Soochow University, Suzhou215137, Jiangsu, China.

Enterovirus 71 (EV-71) is a major pathogenic factor that causes hand, foot, and mouth disease in young children and infants. Given the limited treatments for EV-71 infection, discovering new host factors and understanding the mechanisms involved will aid in combating this viral infection. Neutral sphingomyelinase-2 (nSMase-2, encoded by SMPD3) is a crucial cellular cofactor in viral infection.

View Article and Find Full Text PDF

Construction of a Vero cell line expression human KREMEN1 for the development of CVA6 vaccines.

Virol J

January 2025

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, 361102, PR China.

Coxsackievirus A6 (CVA6) has emerged as a major pathogen causing hand, foot and mouth disease (HFMD) outbreaks worldwide. The CVA6 epidemic poses a new challenge in HFMD control since there is currently no vaccine available against CVA6 infections. The Vero cell line has been widely used in vaccine production, particularly in the preparation of viral vaccines, including poliovirus vaccines and EV71 vaccines.

View Article and Find Full Text PDF

Platelet factor 4-derived C15 peptide broadly inhibits enteroviruses by disrupting viral attachment.

J Virol

January 2025

Department of Infectious Diseases, Center of Infectious Diseases and Pathogen Biology, Institute of Virology and AIDS Research, Key Laboratory of Organ Regeneration and Transplantation of The Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China.

Unlabelled: Platelet factor 4 (PF4) has been shown to regulate several viral infections. Our previous study demonstrated that PF4 inhibits the entry of enterovirus A 71 (EV71) and coxsackievirus A16 (CA16), which cause hand, foot, and mouth disease (HFMD). In this study, we report that PF4 also inhibits the circulating HFMD pathogen coxsackievirus A6 (CA6) and the re-emerging enterovirus D68 (EVD68).

View Article and Find Full Text PDF

Distinct pathways utilized by METTL3 to regulate antiviral innate immune response.

iScience

November 2024

Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China.

Article Synopsis
  • METTL3 is a key enzyme that adds m6A modifications to RNA, impacting innate immunity and viral responses.
  • Infection with EV71 increases METTL3 levels in both IFN-deficient and proficient cells through changes in transcription and protein modifications.
  • METTL3 regulates antiviral responses through both m6A-dependent and independent mechanisms, suggesting it could be a valuable target for developing antiviral treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!