Vulnerability to climate change of a microendemic lizard species from the central Andes.

Sci Rep

Instituto de Investigaciones en Biodiversidad y Medioambiente, Consejo Nacional de Investigaciones Científicas y Técnicas (INIBIOMA-CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Argentina.

Published: June 2021

Given the rapid loss of biodiversity as consequence of climate change, greater knowledge of ecophysiological and natural history traits are crucial to determine which environmental factors induce stress and drive the decline of threatened species. Liolaemus montanezi (Liolaemidae), a xeric-adapted lizard occurring only in a small geographic range in west-central Argentina, constitutes an excellent model for studies on the threats of climate change on such microendemic species. We describe field data on activity patterns, use of microhabitat, behavioral thermoregulation, and physiology to produce species distribution models (SDMs) based on climate and ecophysiological data. Liolaemus montanezi inhabits a thermally harsh environment which remarkably impacts their activity and thermoregulation. The species shows a daily bimodal pattern of activity and mostly occupies shaded microenvironments. Although the individuals thermoregulate at body temperatures below their thermal preference they avoid high-temperature microenvironments probably to avoid overheating. The population currently persists because of the important role of the habitat physiognomy and not because of niche tracking, seemingly prevented by major rivers that form boundaries of their geographic range. We found evidence of habitat opportunities in the current range and adjacent areas that will likely remain suitable to the year 2070, reinforcing the relevance of the river floodplain for the species' avoidance of extinction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172825PMC
http://dx.doi.org/10.1038/s41598-021-91058-wDOI Listing

Publication Analysis

Top Keywords

climate change
12
change microendemic
8
liolaemus montanezi
8
geographic range
8
species
5
vulnerability climate
4
microendemic lizard
4
lizard species
4
species central
4
central andes
4

Similar Publications

Introduction: Dengue is one of the most widespread arboviruses in Latin America and is now affecting areas previously free of transmission. The COVID-19 pandemic and climatic variations appear to have affected the incidence of the disease, abundance of vectors and health programs related to dengue in some countries.

Objective: To analyze the epidemiology of dengue in Paltas, Ecuador (2016-2022), compare the periods before and during the COVID-19 pandemic, examine entomological reports and discuss the possible implications of the COVID-19 pandemic and climatic variations.

View Article and Find Full Text PDF

Cotton is essential for the global textile industry however, climate change, especially extreme temperatures, threatens sustainable cotton production. This research aims to identify breeding strategies to improve heat tolerance and utilize stress-resistant traits in cotton cultivars. This study investigated heat tolerance for 50 cotton genotypes at the seedling stage by examining various traits at three temperatures (32 °C, 45 °C and 48 °C) in a randomized plot experiment.

View Article and Find Full Text PDF

The impact of climate change on vulnerable populations in pediatrics: opportunities for AI, digital health, and beyond-a scoping review and selected case studies.

Pediatr Res

January 2025

Division of General Pediatrics, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.

Climate change critically impacts global pediatric health, presenting unique and escalating challenges due to children's inherent vulnerabilities and ongoing physiological development. This scoping review intricately intertwines the spheres of climate change, pediatric health, and Artificial Intelligence (AI), with a goal to elucidate the potential of AI and digital health in mitigating the adverse child health outcomes induced by environmental alterations, especially in Low- and Middle-Income Countries (LMICs). A notable gap is uncovered: literature directly correlating AI interventions with climate change-impacted pediatric health is scant, even though substantial research exists at the confluence of AI and health, and health and climate change respectively.

View Article and Find Full Text PDF

Precession modulates the poleward expansion of atmospheric circulation to the Arctic Ocean.

Nat Commun

January 2025

Centre for Marine Magnetism (CM2, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.

Under sustained global warming, Arctic climate is projected to become more responsive to changes in North Pacific meridional heat transport as a result of teleconnections between low and high latitudes, but the underlying mechanisms remain poorly understood. Here, we reconstruct subarctic humidity changes over the past 400 kyr to investigate the role of low-to-high latitude interactions in regulating Arctic hydroclimate. Our reconstruction is based on precipitation-driven sediment input variations in the Subarctic North Pacific (SANP), which reveal a strong precessional cycle in subarctic humidity under the relatively low eccentricity variations that dominated the past four glacial-interglacial cycles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!