Three novel quantum-inspired swarm optimization algorithms using different bounded potential fields.

Sci Rep

Faculty of Electrical and Computer Engineering, Escuela Superior Politécnica del Litoral, EC090112, Guayaquil, Ecuador.

Published: June 2021

Based on the behavior of the quantum particles, it is possible to formulate mathematical expressions to develop metaheuristic search optimization algorithms. This paper presents three novel quantum-inspired algorithms, which scenario is a particle swarm that is excited by a Lorentz, Rosen-Morse, and Coulomb-like square root potential fields, respectively. To show the computational efficacy of the proposed optimization techniques, the paper presents a comparative study with the classical particle swarm optimization (PSO), genetic algorithm (GA), and firefly algorithm (FFA). The algorithms are used to solve 24 benchmark functions that are categorized by unimodal, multimodal, and fixed-dimension multimodal. As a finding, the algorithm inspired in the Lorentz potential field presents the most balanced computational performance in terms of exploitation (accuracy and precision), exploration (convergence speed and acceleration), and simulation time compared to the algorithms previously mentioned. A deeper analysis reveals that a strong potential field inside a well with weak asymptotic behavior leads to better exploitation and exploration attributes for unimodal, multimodal, and fixed-multimodal functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172946PMC
http://dx.doi.org/10.1038/s41598-021-90847-7DOI Listing

Publication Analysis

Top Keywords

three novel
8
novel quantum-inspired
8
swarm optimization
8
optimization algorithms
8
potential fields
8
paper presents
8
particle swarm
8
unimodal multimodal
8
potential field
8
algorithms
5

Similar Publications

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

Background: Developing interventions along with the population of interest using systems thinking is a promising method to address the underlying system dynamics of overweight. The purpose of this study is twofold: to gain insight into the perspectives of adolescents regarding: (1) the system dynamics of energy balance-related behaviours (EBRBs) (physical activity, screen use, sleep behaviour and dietary behaviour); and (2) underlying mechanisms and overarching drivers of unhealthy EBRBs.

Methods: We conducted Participatory Action Research (PAR) to map the system dynamics of EBRBs together with adolescents aged 10-14 years old living in a lower socioeconomic, ethnically diverse neighbourhood in Amsterdam East, the Netherlands.

View Article and Find Full Text PDF

Direct printed aligners (DPAs) offer benefits like the ability to vary layer thickness within a single DPA and to 3D print custom-made removable orthodontic appliances. The biocompatibility of appliances made from Tera Harz TA-28 (Graphy Inc., Seoul, South Korea) depends on strict adherence to a standardized production and post-production protocol, including UV curing.

View Article and Find Full Text PDF

Background: B7 homolog 3 (B7-H3), an overexpressed antigen across multiple solid cancers, represents a promising target for CAR T cell therapy. This study investigated the expression of B7-H3 across various solid tumors and developed novel monoclonal antibodies (mAbs) targeting B7-H3 for CAR T cell therapy.

Methods: Expression of B7-H3 across various solid tumors was evaluated using RNA-seq data from TCGA, TARGET, and GTEx datasets and by flow cytometry staining.

View Article and Find Full Text PDF

The effects of early-life whisker deprivation on adolescent behavior in C57BL/6J mice.

Brain Res

January 2025

epartment of Basic Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China. Electronic address:

Whisker deprivation at different stages of early development results in varied behavioral outcomes. However, there is a notable lack of systematic studies evaluating the specific effects of whisker deprivation from postnatal day 0 (P0) to P14 on adolescent behavioral performance in mice. To investigate these effects, C57BL/6J mice underwent whisker deprivation from P0 to P14 and were subsequently assessed at 5 weeks of age using a battery of tests: motor skills were evaluated using open field test; emotional behavior was evaluated using a series of anxiety- and depression-related behavioral tests; cognitive function was examined via novel location and object recognition tests; and social interactions were analyzed using three-chamber social interaction test.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!