The coherent superposition of two well separated Gaussian wavepackets, with defects caused by their imperfect preparation, is considered within the phase-space approach based on the Wigner distribution function. This generic state is called the defective Schrödinger cat state due to this imperfection which significantly modifies the interference term. Propagation of this state in the phase space is described by the Moyal equation which is solved for the case of a dispersive medium with a Gaussian barrier in the above-barrier reflection regime. Formally, this regime constitutes conditions for backscattering diffraction phenomena. Dynamical quantumness and the degree of localization in the phase space of the considered state as a function of its imperfection are the subject of the performed analysis. The obtained results allow concluding that backscattering communication based on the defective Schrödinger cat states appears to be feasible with existing experimental capabilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8172851 | PMC |
http://dx.doi.org/10.1038/s41598-021-90738-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!