Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8188609 | PMC |
http://dx.doi.org/10.1097/PCC.0000000000002710 | DOI Listing |
Comput Methods Biomech Biomed Engin
January 2025
School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, Changzhou University, Changzhou, P.R. China.
Slow eye movements (SEMs) are a reliable physiological marker of drivers' sleep onset, often accompanied by EEG alpha wave attenuation. A parallel multimodal 1D convolutional neural network (PM-1D-CNN) model is proposed to classify SEMs. The model uses two parallel 1D-CNN blocks to extract features from EOG and EEG signals, which are then fused and fed into fully connected layers for classification.
View Article and Find Full Text PDFCureus
December 2024
Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, IRN.
Background Orthodontic diagnostic workflows often rely on manual classification and archiving of large volumes of patient images, a process that is both time-consuming and prone to errors such as mislabeling and incomplete documentation. These challenges can compromise treatment accuracy and overall patient care. To address these issues, we propose an artificial intelligence (AI)-driven deep learning framework based on convolutional neural networks (CNNs) to automate the classification and archiving of orthodontic diagnostic images.
View Article and Find Full Text PDFFront Neurorobot
January 2025
College of Artificial Intelligence, Taiyuan University of Technology, Jinzhong, Shanxi, China.
Accurate building segmentation has become critical in various fields such as urban management, urban planning, mapping, and navigation. With the increasing diversity in the number, size, and shape of buildings, convolutional neural networks have been used to segment and extract buildings from such images, resulting in increased efficiency and utilization of image features. We propose a building semantic segmentation method to improve the traditional Unet convolutional neural network by integrating attention mechanism and boundary detection.
View Article and Find Full Text PDFBioact Mater
May 2025
Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.
Millions of patients and their caretakers live and deal with the devastating consequences of spinal cord injury (SCI) worldwide. Despite outstanding advances in the field to both understand and tackle these pathologies, a cure for SCI patients, with their peculiar characteristics, is still a mirage. One of the most promising therapeutic strategies to date for these patients involves the use of epidural electrical stimulation.
View Article and Find Full Text PDFAnimals survive in dynamic environments changing at arbitrary timescales, but such data distribution shifts are a challenge to neural networks. To adapt to change, neural systems may change a large number of parameters, which is a slow process involving forgetting past information. In contrast, animals leverage distribution changes to segment their stream of experience into tasks and associate them with internal task abstracts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!