Fe deficiency has negative effects on voluntary physical activity (PA); however, the impact of consuming Fe-biofortified staple foods on voluntary PA remains unclear. This study compared the effects of consuming Fe-biofortified pearl millet or a conventional pearl millet on measures of voluntary PA in Indian schoolchildren (ages 12-16 years) during a 6-month randomised controlled feeding trial. PA data were collected from 130 children using Actigraph GT3X accelerometers for 6 d at baseline and endline. Minutes spent in light and in moderate-to-vigorous PA were calculated from accelerometer counts using Crouter's refined two-regression model for children. Mixed regression models adjusting for covariates were used to assess relationships between intervention treatment or change in Fe status and PA. Children who consumed Fe-biofortified pearl millet performed 22·3 (95 % CI 1·8, 42·8, P = 0·034) more minutes of light PA each day compared with conventional pearl millet. There was no effect of treatment on moderate-to-vigorous PA. The amount of Fe consumed from pearl millet was related to minutes spent in light PA (estimate 3·4 min/mg Fe (95 % CI 0·3, 6·5, P = 0·031)) and inversely related to daily sedentary minutes (estimate -5·4 min/mg Fe (95 % CI -9·9, -0·9, P = 0·020)). Consuming Fe-biofortified pearl millet increased light PA and decreased sedentary time in Indian schoolchildren in a dose-dependent manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924488PMC
http://dx.doi.org/10.1017/S000711452100180XDOI Listing

Publication Analysis

Top Keywords

pearl millet
28
consuming fe-biofortified
12
fe-biofortified pearl
12
physical activity
8
6-month randomised
8
feeding trial
8
conventional pearl
8
indian schoolchildren
8
minutes spent
8
spent light
8

Similar Publications

Chromium (Cr) is an ever-present abiotic stress that negatively affects crop cultivation and production worldwide. High rhizospheric Cr concentrations inhibit nutrients uptake and their translocation to aboveground parts, thus can affect the growth and development of crop plants. This experiment was designed to evaluate the effects of sole and combined zinc-lysine and iron-lysine applications on photosynthetic efficacy, antioxidative defense, oxidative stress, and nutrient uptake and translocation under Cr stress.

View Article and Find Full Text PDF

Toxic Plants and Their Impact on Livestock Health and Economic Losses: A Comprehensive Review.

J Toxicol

December 2024

Ambo University, Guder Mamo Mezemir Campus, Department of Veterinary Science, West Shewa Zone, Oromia, Ethiopia.

Plants are important components in sustaining the life of humans and animals, balancing ecosystems, providing animal feed and edible food for human consumption, and serving as sources of traditional and modern medicine. However, plants can be harmful to both animals and humans when ingested, leading to poisoning regardless of the quantity consumed. This presents significant risks to livestock health and can impede economic growth.

View Article and Find Full Text PDF

In this study, composite biscuits were produced by combining wheat flour (WF) with different proportions of malted pearl millet (MPM) flour (8%, 16%, 24%, and 32%) and orange peel (OP) flour (2%, 4%, 6%, and 8%), using 100% WF as a control. The investigation covered the functional properties, viscosity, and thermal properties of the flours, along with the proximate composition, antioxidant, physical properties, color attributes, and microbial quality of the composite biscuits. As MPM and OP flour (OPF) contents increased, water absorption capacity, dispersibility, and foaming power increased, while the viscosities of both hot and cold pastes decreased.

View Article and Find Full Text PDF

The coexistence of microplastics and heavy metals in soil can lead to more intricate environmental effects. While plant growth-promoting bacteria have been widely recognized for enhancing the remediation of heavy metal-contaminated soils, little research has been conducted to investigate whether they can alleviate the stress of microplastic-heavy metal composite contamination on plants. We investigated the effects of isolated and screened plant growth-promoting bacteria on the growth and cadmium (Cd) accumulation of under the composite pollution of Cd and polypropylene (PP) with different particle sizes (6.

View Article and Find Full Text PDF

Drought-induced stress presents a substantial threat as it disrupts the normal growth of cereal crops and leads to decreased yields. The persistent occurrence of drought conditions significantly impacts the growth and development of pearl millet. This study aimed to explore how calcium chloride (CaCl2) regulates the growth of pearl millet when it faces a lack of water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!