UNC5 receptor family (UNC5A-D) have been identified as dependence receptors whose functions depend on the availability of their ligand netrin-1. Through binding to netrin-1, these receptors transmit signals for cell survival, migration and differentiation, and participate in diverse physiological and pathological processes. In the lack of netrin-1, however, these receptors initiate apoptosis-inducing signal. Accumulating evidence reveals that netrin-1 and its receptors play a role in tumorigenesis and tumor progression. The expression of UNC5 receptor family is down-regulated in a variety of human tumors. Expression aberrance of UNC5 receptor family in tumors is caused by diverse mechanisms including genomic, epigenetic, transcriptional and post-transcriptional regulation. Notably, blocking netrin-1 binding to its receptors induces apoptotic cell death in tumor cells. In this review, we describe the characters and roles of UNC5 family members in tumorigenesis and tumor progression, discussing the regulatory mechanisms underlying down-regulation of UNC5 family members as well as recent implications of targeting netrin-1/UNC5 on potential clinical application for cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2021.05.034DOI Listing

Publication Analysis

Top Keywords

receptor family
16
unc5 receptor
12
netrin-1 receptors
12
netrin-1 binding
8
tumorigenesis tumor
8
tumor progression
8
unc5 family
8
family members
8
unc5
6
family
6

Similar Publications

Purpose: This study aims to investigate the role and mechanism of -hydroxyl cinnamaldehyde (CMSP) in triggering ferroptosis of small cell lung cancer (SCLC) cells.

Methods: The impact of CMSP on ferroptosis in H1688 and SW1271 cells was assessed through cell experiments and biological information analysis. Moreover, the expression of heme oxygenase 1 (HMOX1) in SCLC tissue was examined.

View Article and Find Full Text PDF

Graph Neural Networks-Based Prediction of Drug Gene Interactions of RTK-VEGF4 Receptor Family in Periodontal Regeneration.

J Clin Exp Dent

December 2024

DDS. Titular Professor. Universidad de Antioquia U de A, Medellín, Colombia. Biomedical Stomatology Research Group, Universidad de Antioquia U de A, Medellín, Colombia.

Background: The RTK-VEGF4 receptor family, which includes VEGFR-1, VEGFR-2, and VEGFR-3, plays a crucial role in tissue regeneration by promoting angiogenesis, the formation of new blood vessels, and recruiting stem cells and immune cells. Machine learning, particularly graph neural networks (GNNs), has shown high accuracy in predicting these interactions. This study aims to predict drug-gene interactions of the RTK-VEGF4 receptor family in periodontal regeneration using graph neural networks.

View Article and Find Full Text PDF

Pulmonary endothelial cell (EC) activation is a key factor in acute respiratory distress syndrome (ARDS). In sepsis, increased glycolysis leads to lactate buildup, which induces lysine lactylation (Kla) on histones and other proteins. However, the role of protein lactylation in EC dysfunction during sepsis-induced ARDS remains unclear.

View Article and Find Full Text PDF

Objective: The present study was designed to comprehensively analyze the expression profiles of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), estrogen-related receptor-α (ERRα), estrogen receptor-β (ERβ), interleukin-6 (IL-6), cysteinyl-aspartic acid-specific protease-3 (caspase-3), and cysteinyl-aspartic acid-specific protease-9 (caspase-9) in endometriosis tissues. It also aimed to elucidate the hitherto unclarified role of PGC-1α in the processes of proliferation, apoptosis, and gene expression regulation of human endometrial stromal cells, thereby providing novel insights and identifying potential molecular targets for advancing endometriosis treatment modalities.

Methods: A total of 49 ectopic endometrial tissue samples and 50 normal endometrial tissue samples were meticulously collected from patients who underwent gynecological surgeries in the People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine in Fuzhou, China, between January 2022 and January 2023.

View Article and Find Full Text PDF

The recent identification of Piezo ion channels demonstrating a mechano-sensitive impact on neurons revealed distinct Piezo-1 and 2 types. While Piezo-1 predominates in neurons linked to non-sensory stimulation, such as pressure in blood vessels, Piezo-2 predominates in neurons linked to sensory stimulation, such as touch. Piezo-1 and 2 have a major bidirectional impact on transient receptor potential (TRP) ion channels, and TRPs also impact neurotransmitter release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!