The support vector machine (SVM) is a very important machine learning algorithm with state-of-the-art performance on many classification problems. However, on large datasets it is very slow and requires much memory. To solve this defficiency, we propose the fast support vector classifier (FSVC) that includes: 1) an efficient closed-form training free of any numerical iterative procedure; 2) a small collection of class prototypes that avoids to store in memory an excessive number of support vectors; and 3) a fast method that selects the spread of the radial basis function kernel directly from data, without classifier execution nor iterative hyper-parameter tuning. The memory requirements of FSVC are very low, spending in average only 6 ·10 sec. per pattern, input and class, and processing datasets up to 31 millions of patterns, 30,000 inputs and 131 classes in less than 1.5 hours (less than 3 hours with only 2GB of RAM). In average, the FSVC is 10 times faster, requires 12 times less memory and achieves 4.7 percent more performance than Liblinear, that fails on the 4 largest datasets by lack of memory, being 100 times faster and achieving only 6.7 percent less performance than Libsvm. The time spent by FSVC only depends on the dataset size and thus it can be accurately estimated for new datasets, while Libsvm or Liblinear are much slower on "difficult" datasets, even if they are small. The FSVC adjusts its requirements to the available memory, classifying large datasets in computers with limited memory. Code for the proposed algorithm in the Octave scientific programming language is provided..
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2021.3085969 | DOI Listing |
Sci Rep
January 2025
Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China.
With the emergence of numerous classifications, surgical treatment for adolescent idiopathic scoliosis (AIS) can be guided more effectively. However, surgical decision-making and optimal strategies still lack standardization and personalized customization. Our study aims to devise proper deep learning (DL) models that incorporate key factors influencing surgical outcomes on the coronal plane in AIS patients to facilitate surgical decision-making and predict surgical results for AIS patients.
View Article and Find Full Text PDFSci Rep
January 2025
Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
To retrospectively develop and validate an interpretable deep learning model and nomogram utilizing endoscopic ultrasound (EUS) images to predict pancreatic neuroendocrine tumors (PNETs). Following confirmation via pathological examination, a retrospective analysis was performed on a cohort of 266 patients, comprising 115 individuals diagnosed with PNETs and 151 with pancreatic cancer. These patients were randomly assigned to the training or test group in a 7:3 ratio.
View Article and Find Full Text PDFAcad Radiol
January 2025
Department of Radiology, Xinhua Hospital, Shanghai Jiaotong University Medical School, Shanghai 200092, China (Z.H.W., Y.Q.M., X.Y.W., N.X.Y., X.Y.W., G.R.). Electronic address:
Rationale And Objectives: The expression of human epidermal growth factor receptor 2 (HER2) in gastric cancer is closely associated with its treatment outcomes and prognosis. This study aims to develop and validate a HER2 prediction model based on computed tomography (CT). Additionally, the study evaluates the robustness of the proposed model.
View Article and Find Full Text PDFJMIR Res Protoc
January 2025
South African Medical Research Council/University of Johannesburg Pan African Centre for Epidemics Research Extramural Unit, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa.
Background: HIV testing is the cornerstone of HIV prevention and a pivotal step in realizing the Joint United Nations Program on HIV/AIDS (UNAIDS) goal of ending AIDS by 2030. Despite the availability of relevant survey data, there exists a research gap in using machine learning (ML) to analyze and predict HIV testing among adults in South Africa. Further investigation is needed to bridge this knowledge gap and inform evidence-based interventions to improve HIV testing.
View Article and Find Full Text PDFJ Control Release
January 2025
Department of Burn Surgery, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China. Electronic address:
The anti-inflammatory role of miR-23b-3p (miR-23b) is known in autoimmune diseases like multiple sclerosis, systemic lupus erythematosus, and rheumatoid arthritis. However, its role in sepsis-related acute lung injury (ALI) and its effect on macrophages in ALI remain unexplored. This investigation aimed to evaluate miR-23b's therapeutic potential in macrophages in the context of ALI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!